10-1-2015

Moving America on Transit – Innovation in Real-time Transit Information

CUTR

Follow this and additional works at: https://scholarcommons.usf.edu/cutr_nctr

Recommended Citation
DOI: https://doi.org/10.5038/CUTR-NCTR-RR-2010-04
Available at: https://scholarcommons.usf.edu/cutr_nctr/41

This Article is brought to you for free and open access by the The Center for Urban Transportation Research (CUTR) at Scholar Commons. It has been accepted for inclusion in National Center for Transit Research Publications by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
Moving America on Transit: Innovation in Real-time Transit Information

October 2015

Final Report
Metric Conversion

SI* Modern Metric Conversion Factors as provided by the Department of Transportation, Federal Highway Administration http://www.fhwa.dot.gov/aaa/metricp.htm

Length

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
<td>mm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.305</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.914</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.61</td>
<td>kilometers</td>
<td>km</td>
</tr>
</tbody>
</table>

Area

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>in²</td>
<td>square inches</td>
<td>645.2</td>
<td>square</td>
<td>mm²</td>
</tr>
<tr>
<td>ft²</td>
<td>square feet</td>
<td>0.093</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>yd²</td>
<td>square yard</td>
<td>0.836</td>
<td>square meters</td>
<td>m²</td>
</tr>
<tr>
<td>ac</td>
<td>acres</td>
<td>0.405</td>
<td>hectares</td>
<td>ha</td>
</tr>
<tr>
<td>mi²</td>
<td>square miles</td>
<td>2.59</td>
<td>square</td>
<td>km²</td>
</tr>
</tbody>
</table>

Length

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU</th>
<th>MULTIPLY</th>
<th>TO FIND</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>millimeters</td>
<td>0.039</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>3.28</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>1.09</td>
<td>yards</td>
<td>yd</td>
</tr>
<tr>
<td>km</td>
<td>kilometers</td>
<td>0.621</td>
<td>miles</td>
<td>mi</td>
</tr>
</tbody>
</table>

Area

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>WHEN YOU</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm²</td>
<td>square</td>
<td>0.0016</td>
<td>square inches</td>
<td>in²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>10.764</td>
<td>square feet</td>
<td>ft²</td>
</tr>
<tr>
<td>m²</td>
<td>square meters</td>
<td>1.195</td>
<td>square yards</td>
<td>yd²</td>
</tr>
<tr>
<td>ha</td>
<td>hectares</td>
<td>2.47</td>
<td>acres</td>
<td>ac</td>
</tr>
<tr>
<td>km²</td>
<td>square</td>
<td>0.386</td>
<td>square miles</td>
<td>mi²</td>
</tr>
</tbody>
</table>

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.
Technical Report Documentation Page

NCTR 79017

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle:
Moving America on Transit – Innovation in Real-time Transit Information

5. Report Date
October 2015

6. Performing Organization Code

7. Author(s)
Sean J. Barbeau, Candace Brakewood, Kari Watkins

NCTR 79017

9. Performing Organization Name and Address
National Center for Transit Research
Center for Urban Transportation Research
University of South Florida
4202 E Fowler Avenue, CUT 100, Tampa, FL 33620-5375

10. Work Unit No. (TRAIS)

11. Contract or Grant No.
NCTR 79017

12. Sponsoring Agency Name and Address
Research and Innovative Technology Administration
U.S. Department of Transportation, Mail Code RDT-30
1200 New Jersey Ave, SE, Room E33, Washington, DC 20590-0001

13. Type of Report and Period Covered
Final Report
3/6/2012-10/31/2015

15. Supplementary Notes

16. Abstract

Transit agencies have begun to provide real-time information (RTI) to riders via mobile and web-enabled devices as a method to address reliability issues. However, it is typically cost-prohibitive for transit agencies to fund custom development of native mobile apps for all popular smartphone platforms. As a result, few cities have full app portfolios that cover all smartphone platforms. This report presents the results of the OneBusAway multi-region project, a collaborative effort that enables the rapid expansion of native mobile transit apps on Android, iPhone, Windows Phone, and Windows 8 to new cities. Tampa, FL was chosen as an initial pilot deployment site for OneBusAway multi-region in early 2013, with a successful public launch following the pilot. As part of the OneBusAway Tampa pilot, an experiment was conducted – 200 users were given access to OneBusAway, while another 200 were monitored as a control group without access to OneBusAway. The results show that the primary benefits associated with providing RTI to passengers pertain to waiting at the bus stop. Analysis of “usual” wait times revealed a significantly larger decrease (nearly 2 minutes) for RTI users compared to the control group. Additionally, RTI users had significant decreases in levels of anxiety and frustration when waiting for the bus compared to the control group. Similarly, they had significant increases in levels of satisfaction with the time they spend waiting for the bus and how often
the bus arrives at the stop on time. Taken together, these findings provide strong evidence that RTI significantly improves the passenger experience of waiting for the bus, which is notoriously one of the most disliked elements of transit trips.

17. Key Words
Mobile apps, transit, real-time data, evaluation, GTFS, GTFS-realtime

18. Distribution Statement

Unclassified Unclassified 44 Unclassified
Executive Summary

Public transit agencies often struggle with service reliability issues; when a bus does not arrive on time, passengers become frustrated and may be less likely to choose transit for future trips. To address reliability issues, transit authorities have begun to provide real-time information (RTI) to riders via mobile and web-enabled devices.

However, offering real-time transit services has been challenging for many transit agencies. While mobile apps have emerged as a preferred dissemination method for real-time information, it is typically cost-prohibitive for transit agencies to fund custom development of native mobile apps for all popular smartphone platforms. Third-party developers can offer services if an agency openly shares real-time data, but these individuals are volunteers whose priorities and deadlines may not be the same as the agency’s. As a result, few cities have full app portfolios that cover all smartphone platforms.

This report presents the results of the OneBusAway multi-region initiative (Appendix A), a collaborative effort that enables the rapid expansion of native mobile transit apps to new cities. OneBusAway is an open-source transit information system that has provided real-time transit services to the Puget Sound, WA area since 2008. The new OneBusAway multi-region feature implemented in this project expands the coverage of the existing Android, iPhone, Windows Phone, and Windows 8 apps for OneBusAway to new cities including Tampa, FL and Atlanta, GA. The research team created a multi-region system architecture that allows each region to deploy and maintain their own open-source OneBusAway server with data from their own geographic area. The URL and geographic bound for each of these servers is then added to a centralized “Regions API”, which acts as a directory of regions to the mobile apps. As a result, users in different geographic areas can download the same OneBusAway app from the app store, but a user in Tampa will see information for the Tampa transit system, and a user in Atlanta would see information for the Atlanta system. New regions can easily be added by a transit agency (or other organization) setting up a new OneBusAway server and the OneBusAway project members adding an entry for that server in the Regions API.

This report discusses design decisions behind the multi-region architecture as well as the collaborative design and development process. The fundamental shift from proprietary to open-source software in the transit industry that has made this type of project possible is also examined, along with the tools that supported the collaborative open-source approach. Lessons learned are also discussed, including the need for a “beta” testing feature prior to full deployment of a new region as well as the importance of directing feedback from users to the correct stakeholder in the OneBusAway community (e.g., app developer vs. transit agency). Future work should include adding the ability to rebrand the app with agency colors and icons without causing additional development and maintenance overhead as well as
identifying a source of funding for project-wide expenses not specific to a particular region.

As part of the OneBusAway Tampa pilot, an experiment was conducted (Appendix B). The objective was to quantify the benefits of RTI provided to bus riders. The method used was a behavioral experiment with a before-after control group design. Approximately 200 users were given access to OneBusAway, while another 200 were monitored as a control group without access to OneBusAway. Web-based surveys were used to measure behavior, feeling, and satisfaction changes of bus riders in Tampa, Florida over a study period of approximately three months.

The results show that the primary benefits associated with providing RTI to passengers pertain to waiting at the bus stop. Analysis of “usual” wait times revealed a significantly larger decrease (nearly 2 minutes) for RTI users compared to the control group. Additionally, RTI users had significant decreases in levels of anxiety and frustration when waiting for the bus compared to the control group. Similarly, they had significant increases in levels of satisfaction with the time they spend waiting for the bus and how often the bus arrives at the stop on time. Taken together, these findings provide strong evidence that RTI significantly improves the passenger experience of waiting for the bus, which is notoriously one of the most disliked elements of transit trips. The frequency of bus trips and bus-to-bus transfers were also evaluated during the study period, but there were no significant differences between the experimental and control groups. This is not surprising since the majority of bus riders in Tampa are transit-dependent and lack other transportation alternatives.

The primary contribution of this experiment is comprehensive evaluation of the passenger benefits of RTI conducted in a controlled environment. Moreover, this research has immediate implications for public transit agencies – particularly those serving largely transit-dependent populations – facing pressure to improve service under tight budget constraints.
Table of Contents

Executive Summary .. V
Appendix A - OneBusAway Multi-region – Rapidly expanding mobile transit apps to new cities .. 1
Appendix B - An experiment evaluating the impacts of real-time transit information on bus riders in Tampa, Florida .. 22
Appendix A - OneBusAway Multi-region – Rapidly expanding mobile transit apps to new cities
OneBusAway Multi-Region – Rapidly Expanding Mobile Transit Apps to New Cities

Sean J. Barbeau, Ph.D.
University of South Florida

Alan Borning, Ph.D.
University of Washington

Kari Watkins, Ph.D.
Georgia Institute of Technology

Abstract

Real-time transit information offers many benefits to transit riders, including reduced wait times and increased customer satisfaction. However, offering real-time transit services has been challenging for many transit agencies. While mobile applications (apps) have emerged as a preferred dissemination method for real-time information, it is typically cost-prohibitive for transit agencies to fund custom development of native mobile apps for all popular smartphone platforms. Third-party developers can offer services if an agency openly shares real-time data, but these individuals are volunteers whose priorities and deadlines may not be the same as the agency's. As a result, few cities have full app portfolios that cover all smartphone platforms. This paper presents the OneBusAway multi-region project, a collaborative effort that is enabling the rapid expansion of native mobile transit apps to new cities. OneBusAway is an open-source transit information system that has provided real-time transit services to the Puget Sound (Washington) area since 2008. The new OneBusAway multi-region feature expands the coverage of the existing Android, iPhone, Windows Phone, and Windows 8 apps for OneBusAway to new cities, including Tampa and Atlanta. The multi-region system architecture, collaborative design and development process, and lessons learned from this ground-breaking project are discussed. The fundamental shift from proprietary to open-source software in the transit industry that has made this type of project possible also is examined.

Introduction

Real-time transit information has many benefits for transit riders. Past research has shown that transit riders who have access to real-time information perceive their wait time to be
around 30 percent shorter than riders who do not have access to real-time information (Watkins et al. 2011). Additionally, real-time information users save almost two minutes in actual wait time, which has a very high disutility value and can be used to perform other tasks. Four Federal Transit Administration (FTA) workshops, held in Seattle (Washington), Salt Lake City (Utah), Columbus (Ohio), and Providence/Kingston (Rhode Island), concluded that real-time information attracts new riders who are otherwise reluctant to start using transit (Cluett et al. 2003). Similarly, a study in Chicago found modest ridership gains from real-time information even prior to wide usage of smart phones (Tang and Thakuriah 2012). Interviews with transit riders in San Francisco and Seattle in 2010 revealed that when the real-time information system was down, some riders elected not to ride the bus (Steinfeld and Zimmerman 2010). Riders also can use the information to adjust their own use of the transit system, e.g., by taking a different less-crowded bus, which can benefit other riders as well (Zimmerman et al. 2011). Other benefits identified in surveys include increased walking (i.e., public health benefits) and, for some riders, increased feelings of safety while waiting, particularly at night (Ferris et al. 2010; Gooze et al. 2013). With the number of smartphone users among transit riders being similar to those in the general population, providing app-based real-time information could be a major benefit to a large proportion of riders (Windmiller et al. 2014).

However, offering real-time information services to transit riders has significant challenges. The cost for a transit agency to implement both Automatic Vehicle Location (AVL) technologies and information dissemination technologies (e.g., electronic signs, mobile phone apps) is not trivial, ranging from approximately $800,000 for a 17-vehicle fleet to $24 million for a 1,900-vehicle fleet (Parker 2008), especially in the public sector where budgets are under pressure. This estimate does not include the cost of mobile apps, which also is significant. The development cost for a business app that includes real-time information can be upwards of $150,000 (Lauvray 2011); understandably, agencies have cited development costs as being the primary barrier for offering “official” transit agency mobile apps (Wong et al. 2013). Another issue is the multiplicity of smartphone platforms. Agencies are reluctant to support all major platforms due to costs, yet choosing which one or two platforms to support also can be difficult. Since riders have shown a preference for accessing real-time information via mobile apps (versus other methods such as text-messages or websites [Watkins et al. 2011]), agencies must find another cost-effective solution for providing mobile apps to riders.

One strategy for increasing the number of mobile transit apps at a transit agency is for the agency to share static (i.e., schedule) and real-time transit information with the general public as “open data” (Barbeau 2013; Wong et al. 2013). Third-party developers (individually not associated with the transit agency) can then independently develop and release mobile apps to the general public. This strategy has successfully produced a number of third-party transit apps at several agencies in the U.S., including Bay Area Regional Transit (BART) in San Francisco (San Francisco Bay Area Rapid Transit District 2012), TriMet in Portland (TriMet 2012), Metropolitan Transportation Authority (MTA) in New York (Authority 2012), and Massachusetts Bay Transportation Authority (MBTA) (Massachusetts Bay Transportation Authority 2012). However, these independent developers may not have the same priorities and deadlines as agencies. For example, if a developer does
not fill the need for an app on a particular platform or an app with particular features (e.g., an accessible interface for individuals with visual or other disabilities), then no such app will exist. Additionally, not all cities in the U.S. have robust high-tech transit populations and developer communities. In these cities, app growth is more modest (Hillsborough Area Regional Transit 2012). And, since real-time transit data formats often differ between cities, apps for one city cannot be shared easily with another.

OneBusAway, a real-time transit information system originally created by researchers at the University of Washington (UW) (Figure 1), takes a new approach to the problem of transit information dissemination (University of Washington 2012).

Unlike traditional transit industry software, OneBusAway is open-source, meaning that the source code for the software is openly available for anyone to download, configure, alter, and deploy (OneBusAway Organization 2013). In addition to being open-source, OneBusAway supports popular bulk transit data formats such as General Transit Feed Specification (GTFS) (Google 2012), GTFS-realtime (Google 2012), and Service Interface for Real Time Information (SIRI) ((CEN) 2012), which means that anyone with access to transit data in these formats can launch his/her own OneBusAway service for his/her city. Furthermore, OneBusAway includes open-source native mobile apps for iPhone, Android, Windows Phone, and Windows 8, which provide rich functionality and responsiveness beyond that typically available in web applications. OneBusAway has been used to jump-
start several pilot and production deployments of real-time transit information systems (OneBusAway 2012). It also has served as the foundation of several research projects that aim to better understand how real-time information impacts transit riders (Ferris 2010; Ferris et al. 2010; Watkins 2011; Watkins et al. 2011; Gooze et al. 2013; Brakewood 2014).

However, until recently, there was a key limitation with the original OneBusAway project—the OneBusAway mobile apps in the respective app stores (i.e., Google Play, Apple App Store, Windows Phone Store, Windows Store) were configured to work only in Puget Sound, where OneBusAway originally was developed.

Extending the reach of the OneBusAway apps for iPhone, Android, Windows Phone, and Windows 8 to new cities raised many questions:

- Should researchers or transit agencies launching new installations of OneBusAway in other regions also launch their own versions of each app in that region?
- If these researchers or transit agencies wanted to make use of project-wide OneBusAway apps, how could these apps be configured to work in new OneBusAway cities?
- Should OneBusAway app users be required to manually configure their apps to work in the correct city? Or, if a centralized server directory was provided, who would be responsible for implementing and supporting this directory? And who would make the required changes to the apps to use the directory?
- Would third-party developers be willing to support new versions of their apps in new cities?
- How should user feedback in multiple cities be directed to the right person (i.e., app developer or regional OneBusAway server administrator)?

This paper presents the OneBusAway multi-region project (OneBusAway 2013), which investigated these questions with the goal of producing a sustainable, low-maintenance, cost-effective system that would support the rapid expansion of mobile transit apps for iPhone, Android, Windows Phone, and Windows 8 to new cities around the world.

Background

There are two primary developments in the transit industry over the last decade that made the OneBusAway multi-region project possible: the development of the original OneBusAway open-source project and the emergence of open transit data.

OneBusAway started as a student project at UW in Seattle, motivated by the simple desire to have a truly usable interface for real-time transit information. It evolved into the PhD dissertation work of Brian Ferris (Ferris 2011) and Kari Watkins (Watkins 2011) and, at the same time, it spread virally to serve 50,000 unique weekly transit riders without official support from the transit agencies and with little outreach or publicity. Sound Transit, King County Metro, and Pierce Transit provided financial support for UW to continue operating OneBusAway from summer 2011 until summer 2013, at which point it was transitioned to Sound Transit.
The second factor that makes OneBusAway multi-regionally feasible is the growing availability of open transit data and, in particular, the emergence of several de-facto transit data standards such as GTFS (Google 2012). As of December 2012, more than 500 agencies worldwide are sharing static (i.e., schedule) data in the GTFS format (Front Seat Management 2012), which allows third-party developers to create transit apps based on these data. GTFS was originally created by Google and TriMet in 2005 as a lightweight and easily-maintainable transit data format for the Google Transit trip planner (Roth 2012). While many agencies originally provided GTFS data for Google Transit, many transit and multimodal applications based on GTFS data have emerged (Barbeau and Antrim 2013), including OneBusAway.

In addition to static data, OneBusAway also requires a real-time data source. Real-time transit data formats can be categorized into two magnitudes: fire-hose and faucet (Barbeau 2013). Fire-hose data formats contain a complete set of the entire state of the transit system, including all known estimated arrival times and all real-time vehicle locations for all routes and stops. In contrast, faucet data formats contain a precise subset of transit data, typically in response to a specific query (e.g., “The next bus on Route 16 will arrive at stop ID 100 in 5 minutes.”).

GTFS-realtime and SIRI have emerged as the two most popular fire hose open data formats (Barbeau 2013). The OneBusAway server software can import both GTFS-realtime and SIRI data frequently (e.g., every 30 seconds) to reflect real-time changes for the entire transit system. Other proprietary formats such as OrbCAD FTP and Nextbus also are supported. And since OneBusAway is open-source, support for new formats can be added by any developer (OneBusAway 2012).

As a result, the OneBusAway server software can be deployed with few modifications in any city that provides data in the above formats.

One of the primary functions of the OneBusAway server is to take fire-hose data as input and provide faucet data as output, on demand, to thousands of apps. OneBusAway currently supports a custom-designed Representational State Transfer (REST) Application Programming Interface (API) for the faucet data, which allows the iPhone, Android, Windows Phone, and Windows 8 apps to retrieve real-time transit data specific to a device’s location and/or user’s request (OneBusAway Organization 2013).

Comparison to Other Real-Time Transit Applications

The open-source nature of OneBusAway is a key differentiator from commercially-available apps such as Moovit, Google Maps, Apple Maps, Microsoft Bing, Embark, RouteShout, Nokia Here, The Transit App, Citymapper, and Tiramisu. These “closed-source” applications all are operated by a single entity that has full control over what cities are supported. A city can request to be included, but it may not be added to the service. Business decisions, such as Apple’s choice to remove Google Maps in mid-2012, resulting in the loss of transit directions for iPhone users, also can instantly leave riders without any transit information.

OneBusAway provides a different model—the software source-code is openly provided to the general public. Therefore, each region can independently create and operate its
own OneBusAway server, and one region’s actions have no effect on another. Additionally, if a OneBusAway regional operator shuts down, another operator in the same region can resume the service.

While there are significant advantages to the independent nature of OneBusAway regions, this independent design also creates the need for some initial coordination when determining how the OneBusAway mobile apps will interact with these independently-operated servers. A solution—the OneBusAway multi-region architecture—is discussed in the following section. This solution can be described as a “you bring the server, we bring the apps” approach, where the OneBusAway apps are centrally maintained and available to all regions, but each regional server is independently created and operated. This architecture, enabled by the open-source nature of the project, is unique to OneBusAway. Additionally, OneBusAway provides native mobile apps on four different platforms (Android, iPhone, Windows Phone, and Windows 8), which is more than any of the previously-mentioned commercially-available solutions.

Multi-Region Architecture

Design Decisions

There were several possible strategies for making the OneBusAway mobile apps available in other cities beyond Puget Sound, one of which was to mirror the replication process of OneBusAway servers for new cities. When a new city wants to set up a new OneBusAway server, engineers would copy the OneBusAway server source code, configure it to access the new city’s real-time transit data, and deploy the copy to a server in the new city. This new OneBusAway server would then provide real-time information via a website.

To mirror this strategy for the mobile apps, engineers in the new city would copy the source code for the iPhone, Android, Windows Phone, and Windows 8 apps. Then, the source code for the apps would be changed to use the local OneBusAway server (instead of the Puget Sound server), as shown in Figure 2. Finally, these modified apps would be deployed to the respective app markets with names such as “OneBusAway Tampa” or “OneBusAway Atlanta.”

This strategy has the advantage of each city acting independently to deploy mobile apps without requiring any coordination among cities. However, this approach has three major drawbacks:

1. **Sustainability** – Each city would need to find new developers to maintain and update the local Android, iPhone, Windows Phone, and Windows 8 apps. This is clearly undesirable, as it is already challenging for many cities to find developers interested in developing transit apps.

2. **Fragmentation** – There would be one copy of each mobile app source code for each city. Therefore, for every bug fix in each mobile app, developers in each city would all have to adapt that fix to their particular modified version of the app. This creates source code that is difficult to maintain, limiting shared app improvements among cities. Additionally, when users try to download the app from the respective app store, they would be presented with a list of OneBusAway apps from all cities to
choose from (e.g., “OneBusAway Tampa,” “OneBusAway Atlanta”), which places the burden on the user to find and install the correct app.

3. **Scalability** – The above two problems increase in complexity as OneBusAway is scaled up to include more and more cities.

![Figure 2](image)

Possible design for OneBusAway with duplicated mobile apps for each city

An alternate approach is for a group of pilot cities to work together and create a coordinated OneBusAway multi-region system (Figure 3). Here, a centralized OneBusAway directory is created with a list of known OneBusAway servers in various cities. Then, the existing iPhone, Android, Windows Phone, and Windows 8 apps are modified so they discover available OneBusAway servers from the directory (i.e., “Regions API”), as shown in Figure 3a. The app compares the user’s real-time location to the list of server locations (Figure 3b) and then connects to the closest server to retrieve route, stop, and arrival information (Figure 3c).

![Figure 3](image)

Current OneBusAway multi-region architecture
Using this approach, the complexity of the OneBusAway multi-region system is hidden from the user, and users in all cities download the same app from the mobile app stores. Additionally, only a single copy of the source code for each app needs to be maintained, and users in all cities would immediately benefit from app improvements. This strategy requires more work and coordination up front for the pilot cities, including the original third-party app developers. However, it drastically reduces sustainability and fragmentation problems for the future of the project, making the system scalable and reducing the overhead of adding more cities to the project. The overall OneBusAway project also benefits from this coordination through additional contributions and feedback from users and developers in multiple cities. Therefore, this strategy was chosen for the OneBusAway multi-region project.

Detailed Protocol

Figure 4 shows the detailed protocol used in the multi-region architecture, including interaction with both the Regions API and a regional OneBusAway server.

When the user first installs and starts the app, the app retrieves a list of region information from the project-wide Regions API and saves this list on the mobile device. Then, the device compares the real-time location of the user to the list of region locations and automatically selects the closest region to the user. If there are any problems with device positioning, the user also can be presented with a list of available OneBusAway regions to choose from.

After the region has been selected, the app directly contacts the regional OneBusAway server to retrieve information about stops and routes that can then be shown to the user. For example, the app might show a set of nearby bus stops on a map. The user can then select a stop to see estimated arrival times for that location. The app then contacts the regional OneBusAway server again to get a list of estimated arrival times for the given stop ID and show this information to the user. At this point, the user may close the app.

The next time the user starts the app, it compares the user’s real-time location to the list of regions stored on the device (i.e., the most recently cached list from the Regions API) in the background to avoid interrupting the user experience. If the user is still in the same region, it continues using the previously-identified server. In the less likely event that the user has moved into a different OneBusAway region (e.g., traveled between cities) since last app startup, the app will automatically switch to the currently closest OneBusAway region, fetch information from that regional server, and move the map to the user’s new location. The implementation of different OneBusAway servers covering different geographic areas is thus completely transparent to the user.

Occasionally, there will be changes to the list of servers and configuration information, including the addition of new regions. Since this information is not expected to change frequently, the mobile app only occasionally refreshes the local copy of region information from the Regions API—one per week in the current design. (This timeframe was selected to balance a reasonable refresh rate to detect new regions against adding additional communication between the mobile device and server, which has an impact on mobile device battery life and increases server load. So far, this timeframe has worked well...
in practice.) Thus, the mobile app operates mostly independently of the Regions API. This design also allows the system to scale easily, since as each new OneBusAway city is added, the vast majority of the new traffic will be handled by the regional OneBusAway server in that area, with only a small increase in traffic for the centralized Regions API.

FIGURE 4. Protocol used by mobile apps to connect to a regional OneBusAway server
Mobile App Modifications

For the multi-region project to be successful, two issues needed to be addressed for each of the iPhone, Android, Windows Phone, and Windows 8 apps:

1. A developer with skills specific to that mobile app platform would need to modify the app to support the multi-region architecture.

2. The third-party developers who publish each of the four OneBusAway apps to respective app stores (e.g., Google Play, Apple App Store, Windows Phone Store, Windows Store) would need to agree to publish a new multi-region version of their mobile apps.

Since the apps are open-source, Issue #1 could be resolved by another developer, not necessarily the primary maintainer of the mobile app. A detailed discussion of the advantages of this open-source model, as well as various collaboration tools that facilitate this process, can be found in the “Collaborative Process” section of this paper.

Issue #2 is not difficult to achieve if the third-party developers are actively maintaining their apps and communicating with others participating in the OneBusAway community. If the developer of the app has the development environment set up and another contributor has made the source code modifications, it would take a few hours of effort to review the changes, compile a new release, and publish this new version to the respective app store. An important aspect of Issue #2 is the potential for a significant increase in user questions and feedback when the app is launched in a new city. For example, as of July 25, 2013, the OneBusAway Android app was actively installed on 141,817 devices, with a total of 234,281 downloads primarily for just the Puget Sound area. To avoid overwhelming the mobile app developers with a large amount of user feedback for new cities, the decision was made to have the “Contact Us” button in all the apps report information to the regional OneBusAway administrator. This design scales well as new OneBusAway administrators and support teams for each new OneBusAway region are added. Further, the current OneBusAway app developers and OneBusAway server administrators indicate that the vast majority of user feedback pertains to issues specific to the region (e.g., errors in the schedule and real-time data), not to the mobile app. It also is often not clear to users where the source of the problem lies, and troubleshooting sometimes requires knowledge of the system operation. Therefore, the OneBusAway administrators handle the majority of feedback and direct any application-specific feedback to the respective application developers as needed. Overall, as discussed later, the OneBusAway mobile app developers were generally enthusiastic participants in this project, since it immediately made their work more widely available to a much larger number of users.

OneBusAway Server Administrators

For the mobile apps to have up-to-date information for each region, OneBusAway regional server administrators must have a way to update a centralized OneBusAway Server Directory. This process must be low effort to implement and maintain, both for the central server directory administrator and the individual regional OneBusAway server administrators.
A Google Doc spreadsheet was selected as the primary data entry tool for regional OneBusAway server administrators. Google Docs provides a reliable, ready-to-use platform for data entry into a spreadsheet that includes access control and data output in the Comma-Separated Values (CSV) file format. The Google Doc is configured to alert a set of administrators that oversee the entire OneBusAway open-source project, referred to as “Multi-region Administrators,” upon any edits. The multi-region administrator runs a Python script to convert the CSV output of the Google Doc to regions.json and regions.xml files, which are then made available to mobile devices via a web server as the Regions API. Thus, adding a new region to the Regions API is fairly simple.

OneBusAway Regions

As of August 2013 (just prior to the launch of the multi-region project), the OneBusAway software suite was deployed to Puget Sound, Tampa, and Atlanta. MTA in New York uses a modified version of OneBusAway for the MTA Bus Time project (Metropolitan Transportation Authority 2012). Detroit has used the OneBusAway software to implement its “Text-My-Bus” text-messaging service for transit riders (Code for America 2012).

In Puget Sound, real-time data from several regional transit agencies (King County Metro, Sound Transit, Pierce Transit, and Intercity Transit) is provided to a single OneBusAway instance hosted by Sound Transit. King County Metro’s data are provided by a dedicated HTTP server that is made available to OneBusAway, Pierce Transit are provided via FTP from a secure file server, Intercity Transit are provided via HTTP, and Sound Transit data are provided via other agencies that operate the Sound Transit vehicles under contract. The system also has schedule-only data from a number of other agencies, including Community Transit, Washington State Ferries, the City of Seattle, and the Seattle Children’s Hospital Shuttle. Additional real-time data feeds are expected in the future.

In Tampa, the University of South Florida (USF) team created an open-source GTFS-realtime feed for Hillsborough Area Regional Transit (HART)’s OrbCAD AVL SQL Server database (University of South Florida 2013) and used the GTFS-realtime feed as input to the OneBusAway Tampa server. In Atlanta, the Georgia Tech team created a GTFS-realtime feed from the Metropolitan Atlanta Rapid Transit Authority (MARTA) proprietary REST API real-time bus data feed and used this as input to the OneBusAway Atlanta server.

The effort required to create a new OneBusAway server deployment and participate in the OneBusAway multi-region project is moderate. An agency or researcher must:

1. Obtain access to static transit schedule data in GTFS format and to a real-time transit data source.
2. Install and configure a OneBusAway server.
3. Contact the OneBusAway group to include the new region in the central directory.

Collaborative Process

Creating the process and infrastructure to rapidly expand mobile transit apps to new cities required a large collaborative effort. As mentioned earlier, individual OneBusAway server administrators were involved in the multi-region architecture design to ensure that the process to add and maintain servers was not effort-prohibitive. App developers were
an integral part of the design process for the implementation and maintenance of the Regions API. The official formation of OneBusAway Board of Directors in January 2013 helped solidify the general OneBusAway project governance model, and members of the board served as key champions in Puget Sound, Atlanta, and Tampa to lead the multi-region process and coordinate the involved parties.

Since participants were geographically dispersed, modern technology played a large role in communication and coordination. The OneBusAway Developers Google Group (OneBusAway 2013) served as the primary group email list. The OneBusAway Board of Directors also held scheduled monthly phone calls for progress updates.

Considering that the OneBusAway multi-region project involved a substantial software engineering effort, the most important enabler of the project was the open-source ecosystem surrounding OneBusAway. Recently, open-source projects such as OpenTripPlanner (OpenPlans 2012), a multimodal web-based trip planning solution, and OneBusAway have emerged as open-source alternative to proprietary vendor-based solutions. Open-source transit projects provide the opportunity for agencies to invest in a common set of tools for a common set of needs—in this case, trip planning and real-time customer information systems.

OneBusAway has flourished as an open-source system. Key tools enabling software development collaboration surrounding OneBusAway are the Git version control system (Software Freedom Conservancy 2013) and Github.com, an online software project hosting site that uses Git for version control. Git is a fully-distributed version control system that allows multiple developers to independently work on a project and then easily merge their contributions back into a single project. Github hosts projects versioned with Git and allows developers to communicate easily via email and the website to discuss issues for fixing bugs or implementing new features. The OneBusAway Github organizational account currently features 39 individual projects, or “code repositories,” and 15 official members are under this account. Among the open-source projects are the main OneBusAway server software and apps for Android, iPhone, Windows Phone, and Windows 8, as well as various tools to produce and transform transit data.

An important benefit of Github is the ability of any Github user to easily “fork” (create a copy of) any OneBusAway project. These users can then edit and modify the copy to meet their own needs. Major copies of the main OneBusAway server project include the modifications specific to OneBusAway Tampa, OneBusAway Atlanta, MTA Bus Time, and Detroit’s TextMyBus. Forking a project on Github also provides the ability to merge improvements back into the main project from any copies via “pull requests.” In other words, a developer can create a copy of the project with little coordination with the original developer, learn about the project on their own timeline, implement a new feature or bug fix, and then submit this improvement back to the original project owner for review and possible inclusion in the main application. The Git version control system makes merging these contributions fairly straightforward.

The OneBusAway multi-region project benefited heavily from contributions by developers who were not the original authors of the respective OneBusAway apps, indicating that this project would not have been successful in a traditional closed-source software
environment where the only contributors are the official project owners. For example, the Android multi-region feature was started by the original author in Seattle, but was completed by a contributor from Tampa who was interested in accelerating the availability of the app in Tampa. The iPhone app had the most contributors (4 in Puget Sound and 1 in Atlanta) to bring the multi-region feature to full working order. Numerous developers and tech-savvy users from Puget Sound, Tampa, and Atlanta also helped in testing early versions of the applications. Both the Windows 8 and Windows Phone multi-region updates were completed entirely by the author of the Windows 8 app.

To keep the source code uniform in format and structure, the various OneBusAway projects (e.g., server code, mobile apps) have style guides that can be used by software development tools to re-format any new code to match the project. Additionally, to ensure that the source code remains freely available under a common open-source license, third-party developers are required to sign an Individual Contributor License Agreement (ICLA) that specifies that copyright and patent rights for their contribution are assigned to the project.

Results

In the first half of 2013, the four OneBusAway native mobile applications were modified by mobile app developers to interact with the Regions API as part of the multi-region architecture. In August 2013, the multi-region apps were published on each of the respective app stores and made available in both Atlanta and Tampa, with no perceptible difference to users in Puget Sound. As a result, transit riders in Tampa and Atlanta had access to real-time transit information via Android, iPhone, Windows Phone, and Windows 8 apps. To the knowledge of the authors, the simultaneous launch of real-time transit apps on four native app platforms in more than one city is unprecedented in the transit industry.

There was substantial growth in the use of OneBusAway in the year following the multi-region launch. In August 2013, the OneBusAway Android app was actively installed on 141,817 devices, with a total of 234,281 downloads for the Puget Sound area. One year later, in August 2014, after launching in Tampa, Atlanta, Washington, DC (beta), York (Canada) (beta), and Bear Transit for the University of California, Berkeley (beta), there were 219,460 active installs with a total of 336,681 downloads. In other words, over the course of one year, more than 77,000 active Android devices were added to the system (approximately 54% increase). iOS users grew by approximately 20 percent (approximately 117,000–140,400) over the same time period. Windows Phone app downloads grew from 41,950 to 60,751, a growth of approximately 44 percent. Windows 8 app use increased by around 3,000 downloads.

Studies of the effectiveness of OneBusAway regarding the user experience and impacts on transit riders have been reported in multiple papers (Watkins et al. 2011) (Ferris et al. 2010; Ferris 2011; Watkins 2011), including issues with accuracy and rider perception (Gooze et al. 2013). Although these studies took place in Seattle, additional work is being undertaken in Tampa, New York, and Atlanta (Brakewood 2014) (Brakewood et al. 2014). In short, OneBusAway provides an enhanced user experience, especially in regards to the experience of waiting for the bus to arrive.
OneBusAway has proven to be a reliable platform for delivering transit agency data. From August 2013 to August 2014 in Tampa, the only interruptions in service of OneBusAway to customers were related to internal HART networking issues, not problems with the OneBusAway software or hardware infrastructure. To avoid future issues caused by internal network infrastructure, HART moved hosting OneBusAway to a cloud computing service. Since this time, there have been no further interruptions of OneBusAway service to users. As a result, both agencies and riders have generally been pleased with the deployment of OneBusAway. HART Interim Chief Executive Officer Katharine Eagan stated, “We’re excited with how our customers in Tampa have been so quick to use the OneBusAway app. It has truly enhanced the rider’s experience because they have the answers they need right at their fingertips, and it demonstrates that our patrons appreciate our efforts to bring them innovative solutions.”

The most significant long-term result of the OneBusAway multi-region project is the ease of future expansion of the OneBusAway apps to new cities; adding a new city is as simple as that city setting up a new OneBusAway server and adding that server information to the OneBusAway Server Directory. Other long-term benefits include an increased incentive for developers in the new cities (e.g., Tampa, Atlanta) to contribute to the OneBusAway project, as new features will now be visible in their own cities, resulting in a larger OneBusAway developer community that will continue to grow as new cities are added. A larger development community also reduces the burden on a single entity (e.g., UW) to support the OneBusAway project and, instead, spreads out demands for paid staff and volunteers among multiple agencies and universities. New apps continue to emerge as part of this community; in April 2014, a beta version of OneBusAway for Google Glass was created and is available in all OneBusAway regions.

In conjunction with the multi-region app launch, the home page for the OneBusAway project at http://onebusaway.org was converted from being specific to Puget Sound to encompassing all cities involved in the project (Figure 5).
This allows riders to conveniently access regional OneBusAway services. Information for transit agencies interested in their own OneBusAway deployments, developers who want to contribute to the project, and researchers interested in academic publications related to OneBusAway also are included. A straightforward naming scheme for region URLs (e.g., http://tampa.onebusaway.org, http://pugetsound.onebusaway.org) makes it easy to add new regions while at the same time maintaining the identity of the project as a whole.

Lessons Learned

As is the case with many pioneering efforts, the OneBusAway multi-region project yielded many lessons learned. As discussed earlier, the open-source ecosystem of OneBusAway made this project possible. Without contributions from various developers outside of the initial app creators, it is very likely that the effort would not have succeeded. Additionally, open-source software development tools (e.g., Github, Git) and collaboration tools (e.g., Google Groups) greatly facilitated collaboration.

Over the year following the multi-region launch, other areas expressed interest in being added as new OneBusAway regions, including Washington, DC, York (Canada), and Bear Transit in California. However, these regions had not fully tested their real-time information, nor did they have real-time information available for the all agencies included in the region. As a result, they were not ready for a production launch of OneBusAway, but they did want to test OneBusAway with a small user group. To facilitate this “beta” testing, a new “Experimental” field was added to the Regions API, which is set to “true” for any region that has not yet officially launched (e.g., Washington, DC, Bear Transit). The iPhone and Android apps also were modified to include a new user setting to enable “experimental regions” so that users can easily test new regions. When a region is ready to officially launch OneBusAway, this experimental field is set to “true” and then is visible in the apps by default. Additional details about the differences between experimental and production regions can be found in “Adding Regions to the OneBusAway Multi-Region Scheme” (OneBusAway 2014). York Region Transit/VIVA in Canada went through the beta testing process and was promoted to a full production region in September 2014.

Some agencies have expressed an interested in being able to brand OneBusAway with their own colors or even going so far as deploying new versions of the OneBusAway apps to the app stores that are listed under their agency name. Future work can focus on technical solutions to these problems that would allow agencies to re-brand OneBusAway or at least show their identity within the apps while maintaining a single copy of the source code.

The design of directing email feedback from within the app to the local regional maintainers instead of the app developers has been relatively successful to date. Despite significant growth in the number of users over the last year, only 17 email requests for support were received by the OneBusAway Android application developers. Additionally, very few emails were mistakenly sent to the local region (fewer than 10 for Tampa) rather than to the Android app developers. This design successfully ensures that the app developers will not be overwhelmed as new cities are added to OneBusAway. If support emails are sent
to the incorrect location, they are simply forwarded (e.g., from the region support email to the Android app developer email) as needed.

The vast majority of issues reported via email to HART in Tampa was related to arrival time prediction data quality (e.g., the bus said it would arrive in 5 minutes, but arrived earlier than that). Since data (both schedule and real-time) are provided by the agency, the agency is solely responsible for fixing issues related to data quality. Other transit apps using the same data also would be affected by these issues. The next most popular feedback topic was customer experiences with bus drivers, both negative and positive. Future work could help organize the wealth of information coming from riders back to the agencies to facilitate taking action based on these data.

Third-party developers can be extremely productive and responsive when they have time and are interested in a project. Various developers worked on the different mobile apps, many who had not previously contributed to OneBusAway. However, third-party developers can also be unpredictable. During this effort several of the volunteer iPhone developers started and stopped work on the app, primarily due to time pressures from their full-time paid employment. However, managing this unpredictability can be difficult if a project is on a deadline, and in certain situations it may be necessary to use paid developers to finish time-critical work.

It is very beneficial to have project-wide funding that can pay for services that benefit all regions, including paid software engineers who can coordinate the work of many volunteers as needed, as well as hardware and license resources (e.g., website servers, domain name registration). The project is seeking federal support for OneBusAway as a research project, which can also pay for some infrastructure. However, this may not be sustainable, since research organizations (e.g., National Science Foundation) understandably want to fund new research, not operational support. In the future, an agency membership/subscription model surrounding an official non-profit organization may be necessary.

Open-source projects should have multiple administrators to prevent a single developer’s lack of time to update or administer the source code from holding up the status of the entire project. During the multi-region effort, the Android, Windows Phone, and Windows 8 project were all transferred to the primary OneBusAway Github organizational account to enable additional project administrators. This relieves some of the administrative burden from the primary app developer and facilitates contributions from other developers. However, ultimately, the developer holding the account in the Google Play, Apple App Store, Windows Phone, and Windows Stores must be the one to publish new app updates. This can potentially be a bottleneck for development, depending on the smartphone platform. For example, until recently, Apple prohibited transferring apps from an individual to an enterprise account, restricting the group’s ability to build and sign applications for testing. Additionally, Apple has more complex requirements for distributing beta versions for testing. In contrast, Android, Windows Phone, and Windows 8 users can directly install beta versions on their device for testing.

An important consideration for testing is to ensure that the apps are tested on a range of mobile devices (i.e., different models of Android, iPhone, Windows Phone). Accessibility testing also is important, in particular for the OneBusAway iPhone app, which is the plat-
form of choice for many visually impaired riders who use it with “VoiceOver” mode. When new features are introduced, it is important to ensure that the app remains accessible to these riders.

Conclusions and Future Work
The OneBusAway multi-region project has succeeded in rapidly expanding mobile apps for Android, iPhone, Windows Phone, and Windows 8 to many new cities outside of the original Puget Sound deployment, including production launches in Tampa, Atlanta, and York. OneBusAway multi-region enables the rapid deployment of these apps to any city, with several more already on the horizon.

As OneBusAway deployments are transferred from universities to transit agencies, it has become evident that procurement best practices should be established. Current recommendations include that, when writing procurement contracts for OneBusAway installations, software extensions, or maintenance agreements, agencies require that any customizations and extensions be open source and written in a way that they can be contributed back to the project as a whole and benefit all regions, not just the requestor. Ideally, any procurement requests also will include some funds to support shared resources, such as project-wide software engineers. The role of vendors in the open-source ecosystem also should be examined to ensure sufficient incentives for vendor support of OneBusAway deployments.

Finally, OneBusAway was built on the cornerstone of research about the impacts of real-time information, and the project team continues to improve the functionality and usability of the applications. Multiple research studies regarding ridership impacts are ongoing, including a study about the cost-benefit of providing real-time information via such applications.

Acknowledgments
The authors owe a tremendous amount of gratitude to the many people who have contributed to OneBusAway over the years. Brian Ferris created the original OneBusAway server software and the iPhone app, maintained the Puget Sound installation during its formative years, and continues to contribute code and expertise. Paul Watts (Android), Rob Smith (Windows Phone), and Michael Braude (Windows 8) created apps for their respective platforms that extended the reach of OneBusAway to many more users, and they continue to contribute. Additional contributors to the multi-region features include Aaron Brethorst, Chaya Hiruncharoenvate, Caitlin Bonnar, Sebastian Kießling, and Ben Bodenmiller, as well as the first author. S. Morris Rose has had primary responsibility for maintaining OneBusAway in Puget Sound from 2011–2013 and continues to contribute significantly. Landon Reed, Candace Brakewood, Aaron Gooze, and Derek Edwards were instrumental in establishing OneBusAway Atlanta. Khoa Tran developed the GTFS-real-time feed in Tampa. The authors would also like to acknowledge their funding sources: National Center for Transit Research at the Center for Urban Transportation Research at USF; National Center for Transportation Productivity and Management, GVU Center, and IPAT at Georgia Tech, and the National Science Foundation.
Finally, we thank our supporters at the transit agencies who have provided data and resources, including Sound Transit, King County Metro, Pierce Transit, Hillsborough Area Regional Transit, and Metropolitan Atlanta Rapid Transit Authority.

References

Barbeau, S. J., and A. Antrim. 2013. The many uses of GTFS Data – Opening the door to transit and multimodal applications. ITS America 2013, Nashville, Tennessee.

About The Authors

DR. SEAN J. BARBEAU (barbeau@cutr.usf.edu) is the Principal Mobile Software Architect for R&D at the Center for Urban Transportation Research at the University of South Florida. His research interests include intelligent location-aware services for mobile phones, lightweight data communication frameworks for mobile devices, mobile application optimization to conserve battery life, spatial data mining and prediction of individualized travel behavior. He has more than 40 peer-reviewed papers and conference presentations and was a member of an international Expert Group that developed a Java-based software standard for location-aware mobile phones. He has 13 patented inventions and 2 patents pending in the area of location-aware technology. He has a BS and an MS in Computer Science and a PhD in Computer Science and Engineering from USF.

DR. ALAN BORNING (borning@cs.washington.edu) is a professor in the Department of Computer Science & Engineering at the University of Washington and an adjunct faculty member in the Information School. His research interests are human-computer interaction and designing for human values and object-oriented and constraint-based programming languages. Current projects include tools for making public transit more usable, systems to support civic engagement and participation, and constraint-based programming languages and systems. He received a BA in Mathematics from Reed College in 1971 and a PhD in Computer Science from Stanford University in 1979. Awards include a Fulbright
Senior Scholar Award for lecturing and research in Australia and being named a Fellow of the Association for Computing Machinery in 2001.

Dr. Kari Edison Watkins (kari.watkins@ce.gatech.edu) is an Assistant Professor in the School of Civil and Environmental Engineering at the Georgia Institute of Technology. She returned to her undergraduate alma mater to become a faculty member in 2011 after completing a PhD in Civil and Environmental Engineering at the University of Washington. Her teaching and research interests revolve around multimodal transportation planning and the use of technology in transportation. Her dissertation about the impacts of transit rider information tools won a Council of University Transportation Centers’ Wootan Award, and she recently was recognized by Mass Transit Magazine in its “Top 40 under 40.”
Appendix B - An experiment evaluating the impacts of real-time transit information on bus riders in Tampa, Florida
An experiment evaluating the impacts of real-time transit information on bus riders in Tampa, Florida

Candace Brakewood a,⇑, Sean Barbeau b,1, Kari Watkins c,2

a Department of Civil Engineering, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
b Center for Urban Transportation Research, University of South Florida, 4202 E. Fowler Avenue, CUT 100, Tampa, FL 33620, USA
c School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, Atlanta, GA 30332, USA

ARTICLE INFO

Article history:
Received 7 February 2014
Received in revised form 29 July 2014
Accepted 15 September 2014
Available online 16 October 2014

Keywords:
Real-time information
Wait times
Before–after control group research design
Behavioral experiment
Mobile applications
Public transit

ABSTRACT

Public transit agencies often struggle with service reliability issues; when a bus does not arrive on time, passengers become frustrated and may be less likely to choose transit for future trips. To address reliability issues, transit authorities have begun to provide real-time information (RTI) to riders via mobile and web-enabled devices. The objective of this research is to quantify the benefits of RTI provided to bus riders. The method used is a behavioral experiment with a before–after control group design in which RTI is only provided to the experimental group. Web-based surveys are used to measure behavior, feeling, and satisfaction changes of bus riders in Tampa, Florida over a study period of approximately three months.

The results show that the primary benefits associated with providing RTI to passengers pertain to waiting at the bus stop. Analysis of “usual” wait times revealed a significantly larger decrease (nearly 2 min) for RTI users compared to the control group. Additionally, RTI users had significant decreases in levels of anxiety and frustration when waiting for the bus compared to the control group. Similarly, they had significant increases in levels of satisfaction with the time they spend waiting for the bus and how often the bus arrives at the stop on time. Taken together, these findings provide strong evidence that RTI significantly improves the passenger experience of waiting for the bus, which is notoriously one of the most disliked elements of transit trips. The frequency of bus trips and bus-to-bus transfers were also evaluated during the study period, but there were no significant differences between the experimental and control groups. This is not surprising since the majority of bus riders in Tampa are transit-dependent and lack other transportation alternatives.

The primary contribution of this research is a comprehensive evaluation of the passenger benefits of RTI conducted in a controlled environment. Moreover, this research has immediate implications for public transit agencies – particularly those serving largely transit-dependent populations – facing pressure to improve service under tight budget constraints.

Published by Elsevier Ltd.

1. Introduction

Public transit plays a vital role in urban transportation systems. Transit helps to reduce carbon dioxide emissions, decrease gasoline consumption, and combat roadway congestion in metropolitan areas (Schrank et al., 2012). It is one of...
the safest modes of passenger transport, as evidenced by low passenger fatality rates (Neff and Dickens, 2013). Other benefits of transit include providing personal mobility options for those who cannot or choose not to drive (e.g., American Public Transportation Association, 2014) and positive public health impacts associated with active lifestyles (e.g. Besser and Dannenberg, 2005).

Despite its benefits, transit agencies in many American cities struggle to compete with other modes of passenger transportation, especially single-occupancy motor vehicles. To be a viable option when compared to alternatives, transit service must be fast, frequent, and reliable, among other things (Walker, 2012). Reliability can be improved in many ways, including: increasing levels of right of way, such as providing a dedicated lane; using service planning approaches, such as adding slack to scheduled running times; or implementing control strategies, such as holding vehicles that are ahead of schedule. While these supply-side strategies can be effective at improving reliability, they often come at a substantial cost.

Recently, a demand-side strategy has emerged that can improve the perception of reliability: providing real-time vehicle location and/or arrival information helps passengers adapt to unreliability of transit service (Carrel et al., 2013). Moreover, real-time information (RTI) can be provided to passengers in an increasingly cost-effective manner, particularly when agencies take an “open data” approach. “Open data” means that the transit authority makes their service information freely available to the general public in a computer-readable format (Barbeau, 2013; Wong et al., 2013). This information can be used by third-party software developers to create transit “apps,” often at little-to-no additional cost to the agency. The rapid adoption of mobile devices makes this third-party information dissemination channel directly accessible to an increasing number of riders (Schweiger, 2011). This trend has occurred so rapidly in the United States that, in December of 2012, the president of the American Public Transportation Association said that “the proliferation of transit apps is one of the most exciting things to happen to this industry” (Mann, 2012). In light of this, decision-makers at the country’s transit providers want to understand the impacts of RTI. This research aims to provide a comprehensive study of the benefits of providing RTI to riders via web-enabled and mobile devices. To do this, a controlled behavioral experiment, which is an established methodology in the social sciences (Campbell and Stanley, 1963), was conducted to evaluate the impact of RTI on bus riders.

This paper proceeds as follows. First, prior research about real-time transit information is reviewed and hypotheses about the benefits of RTI are presented. The next section provides detailed information about the methodology used to conduct the controlled behavioral experiment. This is followed by the results, the limitations of the study, and the conclusions.

2. Literature review

There is a growing body of research that aims to understand the rider benefits of RTI. An early segment of this research focused on the impacts of RTI displayed on signage at stops or in stations (e.g., Hickman and Wilson, 1995; Dzielen and Kottenhoff, 2007; Politis et al., 2010). Recently, the literature has expanded to include the provision of RTI through web-enabled and/or mobile devices. Many of the initial studies of RTI provided via personal devices relied heavily on stated preference and/or simulation methods to evaluate possible impacts (e.g., Caulfield and Mahony, 2009; Tang and Thakuriah, 2010). Given the recent widespread availability of RTI applications throughout the country, there is a growing subset of the literature that uses actual behavioral data to understand rider benefits, and it is the focus of this review. Based on prior behavioral studies, the following key benefits of RTI were identified: (1) decreased wait times, (2) increased satisfaction with transit service, and (3) increased ridership. It should be noted that there may be other rider benefits associated with the use of RTI (e.g. route choice to minimize travel time), but prior research has largely relied on stated preference or simulation methods (e.g., Cats et al., 2011; Fonzone and Schmöcker, 2014). Therefore, this study focuses on the benefits grounded in actual behavioral studies to provide a framework for evaluation of RTI in a controlled environment.

The following review includes discussion of each one of these impacts (decreased wait times, increased satisfaction, and increased ridership), as well as related benefits.

2.1. Decreased wait times and feelings experienced while waiting

When passengers utilize RTI, they can time their departure from their origin to minimize their wait time at stops or stations; moreover, RTI can reduce their perception of the length of wait times. In Seattle, Washington, a recent study found that bus riders with RTI had actual wait times that were almost two minutes less than those of non-users, and perceived wait times of RTI users were approximately 30% less than those who did not use RTI (Watkins et al., 2011).

Because passengers spend less time waiting at stops and stations, RTI may increase passenger perceptions of personal security when riding transit, particularly at night. A panel study conducted at the University of Maryland measured changes before and after the implementation of a RTI system on the university shuttle bus network, and the results revealed that passengers reported increased levels of perceived personal security at night attributable to RTI (Zhang et al., 2008). Two web-based surveys of RTI users conducted in Seattle, Washington provide additional evidence that RTI may increase self-reported levels of personal security. In the first survey, conducted in 2009, 18% of respondents reported feeling “somewhat safer” and another 3% felt “much safer” as result of using RTI (Ferris et al., 2010). In 2012, a follow-up web-based survey in Seattle found over 32% of RTI users had a positive shift in their perception of personal security (Goode et al., 2013).

In addition, prior studies have aimed to assess changes in other feelings while waiting for the bus, including aggravation, anxiety and relaxation. The previously mentioned University of Maryland panel study evaluated levels of anxiety while
waiting for the bus but did not find a significant decrease associated with the use of RTI (Zhang et al., 2008). Similarly, the Seattle study of wait times evaluated passenger levels of aggravation and relaxation while waiting, but the results showed no significant difference between the RTI users self-reported aggravation levels and that of those without RTI (Watkins et al., 2011).

2.2. Increased satisfaction with transit service

In theory, if transit passengers spend less time waiting (or perceive waiting time to be less), it follows that they may feel more satisfied with overall transit service. The University of Maryland study found a significant increase in overall satisfaction with shuttle bus service attributable to RTI (Zhang et al., 2008). Additionally, in the 2009 web-based survey of RTI users in Seattle, 92% of respondents stated that they were either “somewhat more” satisfied or “much more” satisfied with overall transit service, and the follow-up 2012 survey of RTI users found similar results (Ferris et al., 2010; Gooze et al., 2013).

2.3. Increased ridership and transfers

If passengers spend less time waiting and/or are more satisfied with overall transit service, then the provision of RTI may also cause an increase in the frequency of transit trips by existing riders or potentially attract new riders to transit. In Seattle, the two web-based surveys of RTI users previously discussed found that approximately one third of riders reported an increase in the number of non-work/school trips per week made on transit because of RTI (Ferris et al., 2010; Gooze et al., 2013). On the other hand, the University of Maryland study also evaluated frequency of travel on the university shuttle bus system but concluded that RTI did not cause an increase in shuttle bus trips (Zhang et al., 2008). Last, an empirical evaluation of Chicago bus ridership found a “modest” increase in overall route-level ridership (precisely 126 rides per route per day, which is 1.8–2.2% of average route-level weekday bus ridership) attributable to real-time bus information (Tang and Thakuriah, 2012).

If passengers take more trips on transit, they may also increase the number of transfers they make between transit routes. Similarly, if RTI reduces the perception of the length of wait times, it could also reduce the perception of transfer times, potentially leading to an increased willingness to transfer. In a follow-up study in Chicago, the impacts of bus RTI on rail ridership were evaluated, and the results showed a small increase in rail ridership (0.3% of the average weekday train station-level ridership) attributable to bus RTI. The authors argue that this increase in rail ridership may be due to increased intermodal transfer efficiency between buses and trains, which suggests a complementary effect of the provision of bus RTI on connected rail service (Tang et al., 2012).

Last, it should be noted that most of these RTI studies were conducted in two large American cities (Seattle and Chicago) that have extensive bus systems. The Chicago Transit Authority and King County Metro in Seattle operate the second and seventh largest American bus systems, respectively, based on passenger miles (Neff and Dickens, 2013). Given the sheer size of these networks, they differ from many other American bus systems in their level of service provision (namely frequency of service and/or origin–destinations served), as well as the demographics of transit riders that include relatively high levels of “choice” riders (ORC, 2011; Zhao et al., 2014). Evaluation of the benefits of RTI in a mid- or small-sized transit system may find different levels of benefits.

3. Hypotheses

Based on this literature review of studies evaluating transit rider behavior, the following hypotheses about the benefits of RTI have been developed. First, it is hypothesized that RTI is associated with a decrease in the wait times (either actual and/or perceived) of riders. Second, riders using RTI may report increased levels of personal security while riding transit, likely because they can reduce their wait times at bus stops. Third, RTI use may be associated with decreases in levels of aggravation and anxiety or increases in levels of relaxation while waiting for the bus, although most prior studies have not found significant changes in these feelings. RTI use may also result in higher levels of satisfaction with overall transit service. Last, RTI users may increase their frequency of transit trips, as well as their frequency of transferring.

4. Methodology

A controlled behavioral experiment was conducted in Tampa, Florida to evaluate the benefits of providing RTI to transit riders. Tampa was selected as the location for this study for two reasons. First, the transit provider in Tampa, Hillsborough Area Regional Transit (HART), operates a bus service of approximately 27 local and 12 express bus routes (HART, 2013a) and had a FY2013 annual ridership of approximately 14.6 million bus trips (HART, 2013b). Therefore, this small-sized transit system differs from the prior studies of larger systems (Seattle and Chicago). Notably, the demographics of HART’s ridership are largely transit-dependent users; their most recent system-wide survey showed that 56% of riders do not have a valid driver’s license and 66% live in households without cars (Tindale-Oliver et al., 2010).

More importantly, Tampa offered a unique opportunity to provide RTI to only a controlled subset of transit riders. HART outfitted all of their buses with automatic vehicle location (AVL) equipment in 2007, but initially implemented the system
for operational purposes only and did not share RTI with riders. In 2012, the agency granted the authors special access to their real-time bus data in order to develop a RTI system for riders. Since there were no other means for HART riders to access RTI, a controlled environment was available for experimentation. The transit agency and the authors decided to pursue a small-scale launch of the RTI system, which provided a limited time to conduct a research study that restricted access of RTI to a small group of participants. In light of the opportunity to expose a controlled population to RTI without other interference (i.e. the launch of other transit agency developed applications or the public release of open real-time data), a behavioral experiment was selected as the methodology for this study.

4.1. Experimental design

The specific method utilized was a before–after control group research design (Campbell and Stanley, 1963). The treatment in this experiment was access to RTI over a study period of approximately three months. The method of measuring rider behavior, feeling, and satisfaction changes was two web-based surveys: one administered before RTI and another after the completion of the study period. The reason for using a web-based survey (as opposed to paper or telephone surveys) was because RTI was only accessible via web-enabled devices; therefore, in order to assure that each study participant could use the treatment, the survey was conducted online.

4.2. Treatment

The treatment in this experiment was exposure to RTI. RTI was provided to riders through a transit traveler information system known as OneBusAway. OneBusAway was originally developed in 2008 at the University of Washington to provide real-time bus arrival information for riders in greater Seattle. Over its five years in existence in the Puget Sound region, OneBusAway has increased in utilization to become a proven platform, currently hosting more than 100,000 unique users per week. More importantly, OneBusAway was developed as an open-source system, which allows others to adapt the code for their own transit systems.

Five OneBusAway interfaces were developed for Tampa and made available to the experimental group: a website, two mobile websites for internet-enabled mobile devices (one text-only and the other optimized for smartphones), a native Android application, and a native iPhone application (see screenshots in Fig. 1). For the three websites, access was limited by only providing the web address to the experimental group. For the two smartphone applications, participants in the experimental group were instructed to download the OneBusAway application from Seattle and change the settings for the OneBusAway server application programming interface (API) from Seattle to Tampa. An example of the setting change is shown in the rightmost screenshot in Fig. 1.

Fig. 1. Screenshots of the OneBusAway Tampa iPhone application, Android application, and setting changes to limit access (shown for Android).

3 In 2012, HART installed a small LED sign system for estimated arrival information that was intermittently functional. To the best of the authors’ knowledge, the LED signs were only operational at one stop (Marion Transit Center) during the experiment.
4.3. Recruitment

The “before” survey was conducted in February 2013 during a two week period. HART bus riders were recruited to participate in the study through a link posted on the homepage of the transit agency website, as well as through the transit agency email list and other local email lists. The recruitment materials stated that participants would be enrolled in the “OneBusAway Tampa pilot program and research study” and would be “testers” of OneBusAway, meaning that they had early access to OneBusAway until May 2013. Participants were not directly informed that this study would be evaluating the impacts of RTI. Interested riders could enter a publically accessible link to the web-based survey software, and on the pre-wave survey, all respondents were asked to provide an email address in order to contact them for follow-up and the “after” survey. An incentive of a free one day bus pass was provided to all pre-wave survey participants to help increase the response rate.

After the pre-wave survey was completed, respondents were randomly assigned to the control group and the experimental group. Then, the experimental group was emailed instructions explaining how to use RTI, and they were instructed not to share RTI with anyone during the study period. After approximately three months, the “after” survey was administered during the last two weeks of May 2013. A second incentive of a free one day bus pass was provided to all participants (both the control and experimental groups) to help increase the response rate of the post-wave survey.

4.4. Survey content

To measure behavior, feeling, and satisfaction changes, the survey instruments contained identical questions in the pre-wave and the post-wave surveys for both the control and experimental groups. Transit travel behavioral questions included the number of trips on HART buses in the last week and the number of transfers between HART bus routes in the last week. To assess wait times, respondents were asked about their “usual” wait time on the route that they ride most frequently. Participants were also asked questions about eight feelings while waiting for the bus, and they rated them on a five point scale. Specifically, they were asked about three feelings discussed in the prior literature (relaxed, anxious and safety at night and during the daytime), and a minor alteration was made to a fourth (aggravation was changed to frustration). Additionally, three feelings were included that could change due to the availability of RTI: bored, productive and embarrassed. It was hypothesized that riders may feel bored or unproductive while waiting for the bus, but those who checked RTI could experience decreases in these feelings; similarly, passengers might be embarrassed to stand on street corners waiting for the bus for extended periods of time and, if this were the case, those who use RTI may experience a decrease in this feeling. To assess satisfaction, all participants were asked to rate their level of satisfaction with overall transit service on a five point scale. Because the transit customer research literature typically breaks down satisfaction ratings into specific elements of service provision (e.g., Eboli and Mazzulla, 2007), five indicators of certain elements of transit service were also included. One of these indicators was specifically targeted at passenger wait times: “how long you have to wait for the bus.” Two indicators aimed to capture reliability of the transit service: “how often the bus arrives at the stop on time” and “how often you arrive at your destination on time.” The last two indicators represented frequency of service and transferring, respectively: “how frequently the bus comes” and “how often you have to transfer buses to get to your final destination.”

In addition to the questions that were asked of both the control and experimental groups in the before and after surveys, a series of questions was added to the post-wave survey of the experimental group to assess if RTI users perceived a change in their travel behavior, satisfaction, and feelings. This was specifically done because two prior studies in the Seattle area asked RTI users to self-report changes (Ferris et al., 2010; Gooze et al., 2013), and asking these perception questions allows for comparison with the previously mentioned questions asked on both the pre-wave and post-wave surveys.

It should also be noted that standard socioeconomic characteristics were asked to understand the representativeness of the survey participants of HART bus riders. Respondents were also asked about their use of information and communication technologies (e.g. smartphones and computers).

The survey instruments were pre-tested on a group of a dozen students and staff at Georgia Tech and reviewed by customer research employees at HART before dissemination.

4.5. Sample size

The sample sizes for the before and after surveys are shown in Table 1. A total of 534 people initially entered the link to the survey software, and of these, 452 responses included a unique email address, which was necessary to contact participants for the post-wave survey. These 452 usable responses were then divided into the control and experimental groups using a random number generator. 59% of the usable experimental group and 60% of the usable control group sufficiently completed the post-wave survey, which resulted in a final sample size of 268 participants.

A key challenge to conducting this controlled behavioral experiment was limiting access of OneBusAway to only the experimental group. As can be seen in Table 1, some contamination of the control group occurred because 24 participants figured out how to access OneBusAway, mostly by searching the internet sufficiently to find the website (14/24) or receiving instructions from family/friends (8/24). Similarly, there were some members of the experimental group (27 total) that never used OneBusAway during the study period. The most common reason for not using OneBusAway was not having a smartphone (12/27), and other common reasons included not riding the bus, not needing it, and not having time to read instruc-
Table 1
Sample size.

<table>
<thead>
<tr>
<th></th>
<th>Before survey<sup>a</sup></th>
<th>After survey<sup>b</sup></th>
<th>Sample size of OneBusAway users</th>
<th>Sample size of non-users</th>
<th>Sample size total</th>
<th>Percent of before survey usable sample (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental group</td>
<td>534</td>
<td>229</td>
<td>110</td>
<td>27</td>
<td>137</td>
<td>59</td>
</tr>
<tr>
<td>Control group</td>
<td>223</td>
<td>24</td>
<td>107</td>
<td>131</td>
<td>268</td>
<td>59</td>
</tr>
<tr>
<td>Total</td>
<td>534</td>
<td>452</td>
<td>134</td>
<td>134</td>
<td>268</td>
<td>59</td>
</tr>
</tbody>
</table>

^a Only participants who provided a unique email address and were 18+ years of age were deemed usable.

^b Only participants responding to at least 50% of the questions were included in the final sample.

Table 2
Socioeconomic characteristics of the control and experimental groups.

<table>
<thead>
<tr>
<th>Category</th>
<th>Variable</th>
<th>Control group</th>
<th>Experimental group</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>#</td>
<td>%<sup>a</sup></td>
<td>#</td>
</tr>
<tr>
<td>Total</td>
<td>All respondents</td>
<td>107</td>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>Age</td>
<td>Age 18–24</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Age 25–34</td>
<td>24</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Age 35–44</td>
<td>24</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Age 45–54</td>
<td>27</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Age 55–64</td>
<td>16</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Age 65–74</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Age 75 and over</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>No answer</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Annual household income</td>
<td>Under $5000</td>
<td>9</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$5000–$9999</td>
<td>9</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>$10,000–$19,999</td>
<td>23</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>$20,000–$29,999</td>
<td>14</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>$30,000–$39,999</td>
<td>13</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>$40,000–$49,999</td>
<td>8</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$50,000 or more</td>
<td>27</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>No answer</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Household car ownership</td>
<td>No cars</td>
<td>53</td>
<td>50</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>1 car</td>
<td>30</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2 cars</td>
<td>19</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>3 or more cars</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>No answer</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>License</td>
<td>Has a valid license</td>
<td>71</td>
<td>66</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>No license</td>
<td>35</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>No answer</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>53</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>54</td>
<td>50</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>No answer</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Employment status</td>
<td>Employed full time</td>
<td>57</td>
<td>53</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Employed part time</td>
<td>17</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Not employed</td>
<td>7</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Retired</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Student</td>
<td>13</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Other (disabled, etc.)</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>No answer</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>White</td>
<td>75</td>
<td>70</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Black/African American</td>
<td>19</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Hispanic or Latino</td>
<td>5</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Asian</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other<sup>b</sup></td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>No answer</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

^a Figures rounded to the nearest percent.

^b Multiple ethnicity selections included in other.
The results of this behavioral experiment are divided into four sections. The first three sections evaluate changes in behavior, feeling, and satisfaction using identical questions posed on both the pre- and post-wave surveys. The fourth section assesses the questions that were only asked of the experimental group in the post-wave survey.

5.1. Behavior changes

Three measures of behavior change were evaluated: trip frequency, transfer frequency and wait time. To measure differences in transit trip frequency associated with RTI use, all respondents were asked how many trips on HART buses they made in the last week. Similarly, to measure changes in transit transfer frequency, respondents were asked how many of their trips in the last week included a transfer from one HART bus route to another bus route. Both questions (number of trips and number of transfers in the last week) were posed as multiple choice questions in which the respondent could select a whole number ranging from no trips (zero) to ten trips with an additional choice of eleven or more trips/transfers. Riders were also asked which HART bus route they traveled on most frequently and what their “usual” wait time was on that route. The usual wait time question was phrased with whole number multiple choice responses ranging from one minute to fifteen minutes with additional choices “less than one minute” and “more than fifteen minutes.”

For each of the three measures of behavior change, the gain score, or difference (D), from the before survey (Y₁) to the after survey (Y₂) was calculated for each individual as follows:

\[D = Y_2 - Y_1 \]

The mean (M) and standard deviation (SD) of the before survey, the after survey, and the gain scores for the number of trips per week, number of transfers per week, and “usual” wait times are shown in Table 3 for the control group and the experimental group. All three variables had, on average, a decrease from the before to the after survey for both the control and experimental groups. The difference in the mean gain scores between the control group and the experimental group was not significant for bus trips per week (\(t = 0.66, p = 0.512 \)) nor was it significant for transfers per week (\(t = 0.37, p = 0.715 \)). On the other hand, the mean gain score of the usual wait time for the experimental group (−1.79 min) was significantly different (\(t = 2.66, p = 0.009 < 0.01 \)) from the control group (−0.21 min). This implies that the experimental group experienced a decrease in “usual” wait times approximately 1.5 min greater than they would have without RTI. The decrease of −1.79 min in usual wait time experienced by the experimental group represents a 16% decrease from their average wait time (11.36 min) from the pre-wave survey.

In theory, the research design should control for other changes affecting travel behavior, since such changes could be expected to occur similarly for members of both the experimental and control groups. This assumption was directly investigated to understand potential threats to internal validity. Differences in the frequency of transit trips and transfers may be caused by changes in automobile ownership, availability of a driver’s license, household and work location, among other things. Therefore, all participants were asked if they bought/sold a car, got/lost a driver’s license, moved household locations, or changed work/school locations during the study period. A total of 50 participants (24 in the control group; 26 in the experimental group) had one or more of these socioeconomic changes during the study period. Then, participants who had these changes (plus 3 who did not answer the questions) were removed from the calculations. The difference of mean gain scores between the remaining participants in the control group and experimental group was again not significant for bus trips per

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (M), standard deviation (SD), and difference of mean gain scores for trips, transfers, and wait time.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Control group</td>
</tr>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>Trips/Week</td>
</tr>
<tr>
<td>Transfers/Week</td>
</tr>
<tr>
<td>Usual wait time (minutes)</td>
</tr>
</tbody>
</table>

* * * p < 0.10.
* * p < 0.05.
*** p < 0.01.
week \((t = -0.37, p = 0.712)\) or transfers per week \((t = 0.36, p = 0.721)\). These results support the previous analysis shown in Table 3.

Similarly, prior transit research has shown that expected wait times are a function of the frequency and reliability of the transit service (Furth et al., 2006). Therefore, participants were asked what bus route they ride most often. A total of 38 participants (20 in the experimental group; 18 in the control group) reported changing their usual route during the study period. When the participants who changed bus routes were removed from the usual wait time calculations (plus 9 who did not answer the question), the difference between the mean gain scores of the usual wait time for the experimental group \((-1.97 \text{ min})\) and the control group \((-0.01 \text{ min})\) was nearly 2 min and was significantly different \((t = 3.02, p = 0.003 < 0.01)\).

Additionally, regression models of the gain scores of the trips per week, transfers per week, and usual wait time were created to understand the extent to which the experimental design “controlled” for other factors. The results do not differ substantially from the simple \(t\)-statistics. The regression models can be found in Brakewood (2014).

A few caveats about this analysis should be made. First, the one positive finding (usual wait time) relied completely on self-report data, but prior research has shown that self-reported wait times may not align with actual wait times due to the perception of time (Watkins et al., 2011). Accordingly, the finding that the usual wait times of RTI users were less than the usual wait times of non-users could be interpreted as either a change in actual wait time or a change in the perception of wait time associated with RTI. If a RTI user checks the real-time vehicle location/arrival time when s/he is still at his/her origin, s/he can “time” his/her arrival at the stop to minimize his/her wait time, which would be an reduction in “actual” waiting time. However, if a RTI user is only checking for information once s/he arrives at the bus stop, then this would be a reduction in his/her perceived waiting time. To explore this in the survey, each RTI user was asked how often s/he check RTI before leaving for the bus stop (when still at home/work/school); 35% of RTI users “always” check and another 29% “frequently” check RTI before leaving to go to the bus stop. Similarly, 27% of RTI users “always” check and another 34% “frequently” check RTI once they have arrived at the bus stop. In light of this, the proportion of the reported change attributed to perceived or actual changes in wait time is not known from this study and should be determined with independent observations of passenger wait times.

Also, it should be noted that the use of the word “usual” in the wait time question was specifically included to encourage respondents to report their perceived wait times; however, the travel survey literature has found that the use of the word “usual” may cause inaccurate or unreliable responses (Stopher, 2012, p. 182).

Finally, the difference of means test assumes that the variables (difference in trips/week, transfers/week, and usual wait time) are continuous. To lessen the burden of survey participation on the respondents, these questions were posed with multiple choice answers that were capped on the high end (trips/week ranged from 0 to 11 or more trips; transfers/week from 0 to 11 or more transfers; usual wait time from 0 to more than 15 min). Therefore, this analysis decreases the impact of extreme values (trips/transfers more than 12 per week and usual wait times above 15 min).

5.2. Feelings experienced while waiting

Identical questions were posed to participants in the pre-wave and post-wave surveys to evaluate potential changes in feelings while waiting for the bus. These questions quantify the frequency that a respondent experienced specific feelings while waiting for the bus on the following five-point scale: never, rarely, sometimes, frequently, and always. Eight different indicators were used: bored, productive, anxious, relaxed, frustrated, embarrassed, safe at night and safe during the day. Similar to the previous section, the gain score, or difference (D), from the before survey \((Y_1)\) to the after survey \((Y_2)\) was calculated for each individual as follows: \(D = Y_2 - Y_1\). Since each feeling was rated on a five-point scale, the differences ranged from \(-4\) to \(4\). The gain scores were then used in a Wilcoxon rank sum test to evaluate any differences between the control group and the experimental group, and the results are shown in the rightmost column of Table 4. Additionally, the percent of

<table>
<thead>
<tr>
<th>Feelings</th>
<th>Control group</th>
<th>Experimental group</th>
<th>Difference in gain scores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample Before</td>
<td>After</td>
<td>Sample Before</td>
</tr>
<tr>
<td>Bored</td>
<td>n</td>
<td>% Frequently + always</td>
<td>n</td>
</tr>
<tr>
<td>103</td>
<td>49%</td>
<td>45%</td>
<td>107</td>
</tr>
<tr>
<td>Productive</td>
<td>102</td>
<td>11%</td>
<td>106</td>
</tr>
<tr>
<td>Anxious</td>
<td>99</td>
<td>18%</td>
<td>106</td>
</tr>
<tr>
<td>Relaxed</td>
<td>99</td>
<td>18%</td>
<td>105</td>
</tr>
<tr>
<td>Frustrated</td>
<td>103</td>
<td>24%</td>
<td>104</td>
</tr>
<tr>
<td>Embarrassed</td>
<td>100</td>
<td>3%</td>
<td>103</td>
</tr>
<tr>
<td>Safe at night</td>
<td>97</td>
<td>36%</td>
<td>105</td>
</tr>
<tr>
<td>Safe during the day</td>
<td>103</td>
<td>73%</td>
<td>104</td>
</tr>
</tbody>
</table>

* \(p < 0.10\).
* \(p < 0.05\).
* \(p < 0.01\).
respondents experiencing these feelings more than average (either “frequently” or “always”) for the control group and the experimental group on the before survey and the after survey is shown in Table 4.

Table 4 shows that four feelings (productive, anxious, frustrated, and safe during the day) had significant differences from the pre-wave to the post-wave survey between the control group and the experimental group. Feeling “productive” while waiting for the bus increased from 10% of the experimental group in the pre-wave survey to 17% in the post-wave survey (combined total of “frequently” and “always”), and this was significantly different from the control group ($p = 0.051$). This may be because RTI users have better knowledge of how long they will be waiting, which helps them to choose an activity (e.g., reading, sending emails) that is a good fit for the amount of time they will be waiting, as opposed to simply passing the time idly. Second, the experimental group had a small decrease in the frequency with which they feel “anxious” while waiting for the bus, which was somewhat different from the control group ($p = 0.082$). Providing RTI to passengers may help them to feel as if they have more control over their trip (Watkins et al., 2011) and reduce their level of anxiety when waiting for the bus. Notably, the experimental group decreased their frequency of feeling “frustrated” when waiting for the bus (from 25% to 18%; combined total of “frequently” and “always”), and this was significantly different from the control group ($p = 0.006$). One possible explanation of this is that RTI decreases the perception of unreliability of transit service and enables riders to adjust their behavior when service is delayed. This may be particularly important for riders who are dependent on the transit system and do not have other alternatives readily available.

Additionally, feelings of safety during the daytime significantly increased for the experimental group compared to the control group ($p = 0.035$). This may be because passengers spend less time waiting on street corners where they feel exposed to passing traffic or personal crime. Furthermore, at less popular stops, passengers may find themselves waiting alone, and feel unsafe compared to when they are on a transit vehicle with other passengers. It is interesting to note that changes in feelings of safety at night did not have a significant difference between the two groups. There are two likely explanations for why this may not have occurred. First, the pre-wave survey was conducted in February, when daylight hours are short, whereas the post-wave survey was conducted in May, when days are much longer and the evening peak commute occurs in daylight. Because of the seasonal differences, regular commuters may not have experienced many (or any) trips during darkness after beginning to use RTI, and therefore may not have had the opportunity to perceive a change in feelings of safety at night from the pre-wave survey period. An alternative explanation is that most RTI users are carrying a smartphone, which is a common item targeted by thieves (even resulting in the term “Apple-picking” as a common crime in most transit systems). Therefore, RTI users may feel more susceptible to petty theft if they use their smartphones to check RTI, particularly at night.

The three remaining feelings (bored, relaxed and embarrassed) did not have a significant difference between the mean gain scores of the control and experimental groups. Regarding levels of relaxation, it was originally hypothesized that those who decreased their levels of frustration or anxiety would have similar increases in levels of relaxation while waiting, but this did not occur.

5.3. Satisfaction

Six indicators asked about specific aspects and overall service of HART buses, and each indicator was rated on the following five-point scale: very dissatisfied, somewhat dissatisfied, neutral, somewhat satisfied, and very satisfied. Again, the gain score, or difference (D), from the before survey (Y_1) to the after survey (Y_2) was calculated for each individual as follows: $D = Y_2 - Y_1$. Since the indicators were rated on a five-point scale, the differences ranged from −4 to 4. The gain scores were then used in a Wilcoxon rank sum test to evaluate any differences between the control group and the experimental group, and the results are shown in the rightmost column of Table 5. Additionally, the percent satisfied (either “somewhat” or “very”) for the control group and the experimental group is shown for the before survey and the after survey in Table 5.

Two of the variables (how long you have to wait for the bus and how often the bus arrives at the stop on time) increased significantly from the before to the after survey between the control group and the experimental group. This may be because RTI users are able to time their arrival at the bus stop to decrease how long they have to wait for the bus, which may also lead to increased levels of satisfaction with how long they have to wait for the bus. Additionally, RTI may also change a passenger’s perception of a vehicle arriving on time at the stop. Because passenger with RTI know when the vehicle is running late, they may not perceive the bus as being “late” and may be more satisfied with how often the bus arrives at the stop according to the posted schedule. These two variables directly support the “usual” wait time analysis discussed in a previous section.

Both the indicators for frequency of service and arriving at a final destination on time did not have significant changes between the experimental group and the control group. Since the frequency of HART bus service did not change over the study period, it is reasonable that there were not changes in satisfaction with frequency. Similarly, RTI should not, in theory, impact the final time that passengers arrive at their destination, unless they change routes/paths, which is unlikely in a sparse transit network like Tampa’s. It is therefore logical that this indicator did not change. Similarly, there was not previously a difference in the number of transfers associated with using RTI, and therefore, it also is reasonable that satisfaction with the number of transfers did not change.

Finally, it was surprising that the analysis of overall HART bus service did not show a significant change between the control and experimental groups. It was envisioned that since passengers are more satisfied with waiting times – which are notoriously one of the most onerous parts of riding transit (e.g., Hess et al., 2004) – their overall ratings of service might increase. Similarly, since HART is piloting a new technology and catering to the changing demographics of transit riders, this could reinforce their overall satisfaction with transit. The results of the Wilcoxon rank sum test did not support this hypo-
thesis. One possible reason why this may be the case is that a five-point scale is a very simple approximation for levels of satisfaction, and if the changes were slight, then the unit of measurement may not have been sufficient to capture it. Similarly, calculating the difference in ordinal scales may not accurately represent changes in satisfaction because these scales are not absolute measurements.

5.4. Perceived changes

In addition to the measures of behavior, feeling, and satisfaction discussed above, the post-wave survey included questions to the experimental group to directly measure perceived changes due to using RTI, including three questions about behavior (frequency of HART bus trips, frequency of making transfers, and wait time), three questions about feelings while waiting (relaxed, safety at night, and safety during the day), and one question about overall satisfaction with transit service. These questions were specifically included to help assess if participants perceived changes and to test if these perceived changes aligned with the actual (self-reported) differences from the before survey to the after survey. Additionally, these questions were similar to two prior studies of RTI users in Seattle, which also relies on OneBusAway for transit traveler information (Ferris et al., 2010; Gooze et al., 2013), so responses between the two studies could be compared. It is important to note that these questions were placed after all of the previously discussed questions (but prior to questions on changes in demographics) to avoid influencing the responses to the other post-wave survey questions.

Fig. 2 shows that 39% of the experimental group reported that they make HART bus trips more often (combined total of “somewhat” or “much” more often), while the majority (60%) stated that they ride HART buses “about the same” amount. To compare this question with the results of previous analysis of gain scores from the pre-wave to post-wave surveys, each gain score of self-reported trips per week was categorized as an increase, decrease, or no change, and the correlation coefficient with perceived changes (more often, the same, less often) was calculated. The results indicate that there was limited correlation between the perceived change in trips and actual difference in self-reported trips per week over the study period (Pearson’s $R = 0.129$). Additional analysis comparing the perceived changes with the self-reported questions can be found in Brakewood (2014).

Fig. 2 also shows that 16% of RTI users believe that they transfer more often (combined total of “somewhat” or “much” more often), whereas over three quarters (79%) of stated that they transfer “about the same” number of times. Again, there is

Table 5

Percent satisfied and Wilcoxon rank sum test for changes in satisfaction.

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th></th>
<th>Experimental group</th>
<th></th>
<th>Difference in gain scores</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sample Before</td>
<td></td>
<td>After</td>
<td></td>
<td>Sample Before</td>
<td></td>
</tr>
<tr>
<td>How frequently the bus comes</td>
<td>103 37%</td>
<td>41%</td>
<td>107 40%</td>
<td>44%</td>
<td>Wp 5812</td>
<td>0.459</td>
</tr>
<tr>
<td>How long you have to wait for the bus</td>
<td>103 39%</td>
<td>34%</td>
<td>106 36%</td>
<td>46%</td>
<td>6425</td>
<td>0.020 **</td>
</tr>
<tr>
<td>How often the bus arrives at the stop on time</td>
<td>103 54%</td>
<td>45%</td>
<td>107 45%</td>
<td>59%</td>
<td>7094</td>
<td>0.0001 ***</td>
</tr>
<tr>
<td>How often you arrive at your destination on time</td>
<td>101 57%</td>
<td>53%</td>
<td>106 55%</td>
<td>63%</td>
<td>5835</td>
<td>0.236</td>
</tr>
<tr>
<td>How often you transfer to get to your final destination</td>
<td>100 44%</td>
<td>42%</td>
<td>106 38%</td>
<td>36%</td>
<td>4916</td>
<td>0.342</td>
</tr>
<tr>
<td>Overall HART bus service</td>
<td>102 63%</td>
<td>59%</td>
<td>106 57%</td>
<td>58%</td>
<td>Wp 5717</td>
<td>0.410</td>
</tr>
</tbody>
</table>

* $p < 0.10$.
** $p < 0.05$.
*** $p < 0.01$.

Fig. 2. Perceived behavior changes of RTI users.
limited correlation between the stated question and the actual change (increased, decreased or same number) in transfers per week from the before to the after survey (Pearson’s $R = 0.138$).

Importantly, 64% of RTI users reported that they spend less time (combined total of “somewhat” and “much” less) waiting at the bus stop, which is in alignment with the previous analysis of “usual” wait times. This result is notably smaller than for a similar question posed of Seattle RTI users, which found that 91% reported spending less time waiting (Ferris et al., 2010). Also, when this question was compared to the change in self-reported usual wait times from the before to the after survey, there was very little correlation (Pearson’s $R = 0.009$). This low level of correlation was likely due to two groups: one group who reported actual decreases in “usual” wait times but stated that they wait “about the same” (14% of the experimental group) and another group who reported identical “usual” wait times from the before to the after survey but stated that they wait less (21%). This may be caused by differences in the perception of wait time.

Members of the experimental group were also asked to agree or disagree (on a five-point scale from strongly disagree to strongly agree) with statements about increases in feelings of safety at night, safety during the day, and relaxation while waiting for the bus. Fig. 3 shows that 52% were “neutral” about feeling safer at night and the remainder was split almost equally between agreeing (strongly or somewhat) and disagreeing (strongly or somewhat). When asked about safety during the daytime, 40% agreed (strongly or somewhat) that they feel safer since they began using OneBusAway. However, while these results appear to support the previous analysis of changes in perceptions of personal security from the before to the after survey, the correlation between those who had changes in ratings of safety (net increase, decrease or same) with those who perceived that they did was very limited (Pearson’s $R = 0.011$).

As can be seen in Fig. 3, 68% of the experimental group agreed (strongly or somewhat) that they feel “more relaxed” since they started using RTI. While the previous analysis of feelings did not reveal a statistically significant difference between the experimental group and the control group in relaxation, this could in part be captured by reductions in levels of frustration and anxiousness.

Last, members of the experimental group were asked (on a five-point scale from strongly disagree to strongly agree) about increases in their satisfaction with overall HART bus service. As can be seen in Fig. 3, 70% of the experimental group agreed (somewhat or strongly) with the statement that they are more satisfied with overall transit service since they began using RTI. This is notably less than the 2009 study in Seattle, which found that 92% of OneBusAway users were either somewhat or much more satisfied with overall transit service (Ferris et al., 2010). Comparing this question to the changes in ratings of overall satisfaction from the before to the after survey shows no correlation (Pearson’s $R = -0.010$), but there is some limited correlation with the changes in satisfaction with “how long you have to wait for the bus” (Pearson’s $R = 0.134$) and “how often the bus arrives at your stop in-time” (Pearson’s $R = 0.100$).

The analysis discussed in this section presents mixed results, since many of the questions about user perceptions did not align with the self-reported changes from the before to the after survey. One possible reason for this discrepancy is that the questions posed on both the before and after surveys suffered from an insufficient scale of measurement. For example, the use of trips per week to measure transit travel frequency could be insufficient if a person only makes one or two additional trips per month attributable to RTI. A more reliable way to measure this would be to record trips over an extended period of time (e.g. respondents report their number of trips per week for all the weeks over the study period). It is also important to note that this question was a multiple choice question with answers that were capped on the high end (trips/week ranged from 0 to 11 or more trips). Many respondents (12% of the experimental group) selected the maximum category in the pre-wave survey (11 or more trips/week), and then stated that they increased their trips in the post-wave survey, but the surveys did not capture this change.
A second plausible explanation is bias on behalf of the survey respondents. The survey methods literature has shown that respondents often have an affirmation bias, also known as the demand characteristic, and will give the response that he or she thinks the researchers want to hear (Stopher, 2012, p. 149). When asked directly about changes (as opposed to those changes inferred from before and after self-reported measures), participants may have selected answers that they felt would make RTI or their participation in the study look more favorable.

6. Limitations

There are four notable caveats that may limit the results of this study: the length of time of the study, participant difficulties using the smartphone applications, representativeness of the sample, and applicability to a larger population beyond Tampa.

One important limitation of the study was the length of time the treatment (RTI) was applied to the experimental subjects before the post-wave survey was conducted. In June 2013, HART opened its first Bus Rapid Transit (BRT) route in central Tampa. Because this was a significant change to the transit network, the post-wave survey was conducted in May 2013, which was two weeks before the opening of the BRT route. This resulted in a total study period of slightly less than three months, which may not have been sufficiently long to capture changes in travel behavior, feelings, or satisfaction. In theory, the before–after control group design should mitigate such external events (e.g. opening of a new route/line) because the experimental group can be compared to the control group. However, the authors made the decision to conclude the study prior to the BRT launch to avoid any chance of potentially muddying the effect of the treatment by this significant change in transit service.

A second limitation pertains to the manner in which the treatment (access to RTI) was limited to only the experimental group. As was previously noted, in order to use the native smartphone applications for Androids and iPhones, participants were instructed to download the publically available Seattle OneBusAway smartphone applications and then change a setting to re-direct the application programming interface from Seattle to Tampa. In the post-wave survey, the experimental group was asked how difficult this setting change process was, and 64% stated that it was easy. However, 5% of the sample agreed with the statement that it was “so difficult that I did not use the Android/iPhone apps.” Therefore, there could be a non-response bias in which those who found this process overly complicated dropped out of the experimental group. If this was the case, these participants were likely less tech-savvy or possibly less patient than remaining participants, which could, for example, bias feelings while waiting for the bus.

Since the use of a before–after control group research design helps to protect against many threats to interval validity, other noteworthy concerns include threats to external validity (Campbell and Stanley, 1963). First, the representative of the sample to overall bus ridership in Tampa could be a concern since non-probability sampling was used to recruit participants. To investigate this, socioeconomic questions were asked on the pre-wave survey, and whenever possible, questions were worded in an identical manner to the last system-wide HART bus ridership survey, which was conducted in 2009 (Tindale-Oliver et al., 2010). The participants in this study differed from the 2009 system-wide survey on three noteworthy socioeconomic characteristics: income, automobile ownership and ethnicity. This study had only 18% of respondents with annual household incomes less than $10,000, but the 2009 ridership survey found that 45% of riders had annual household incomes less than $10,000. Additionally, this study had 52% of respondents without cars in their household, whereas the 2009 survey had 66% of respondents without cars in their household. Last, this study had a total of 59% white participants and 21% African American respondents, whereas the 2009 system-wide survey had only 29% white respondents and 49% African Americans; it should be noted that the survey question in this study allowed respondents to select more than one ethnicity whereas the 2009 system-wide survey did not so the two ethnicity questions are not perfectly equivalent. Additionally, due to institutional review board regulations, participants under age eighteen were not included in this study, which biased the sample away from younger riders. Therefore, it appears that certain groups were oversampled, including those with slightly higher incomes, somewhat increased levels of automobile ownership, Caucasians, and older age groups. Despite these differences, this sample was primarily composed of transit-dependent, low-income participants.

A related concern is that those who were oversampled may be more likely to have higher levels of technology adoption (i.e. web-enabled and mobile devices). Unfortunately, prior survey data on transit rider use of information and communication technologies in Tampa were not available for comparison. Despite this, in the pre-wave survey, respondents were asked which information and communication technologies they use. A total of 78% of participants stated that they used smartphones, and the most commonly used smartphones were Androids (52% of all participants). Since the before and after surveys were conducted through web-based survey software, all participants had, at a minimum, a means to access the internet and could therefore try OneBusAway through the web or mobile web interfaces.

Finally, with respect to the limited gains in trips per week associated with RTI, there are two important notes. First, many bus riders in Tampa are dependent on transit and have limited ability to increase their trips, as they are already using transit for all or a majority of their trips. Also, the participants in this study were recruited from among people already in the sphere of influence of the transit provider; thus, there was no opportunity to analyze the potential of RTI for attracting entirely new riders. For these reasons, a substantial change in existing ridership associated with RTI was not anticipated in this study of Tampa, which may differ from previous research in transit-dense cities such as Seattle or Chicago. For these reasons, it is important to continue to use experimental studies to gauge the impacts of RTI in a variety of locations.
7. Conclusions

This study conducts a comprehensive analysis of the benefits of RTI provided to bus riders in Tampa, Florida. Based on the results of a before–after control group research design, the primary benefits associated with providing RTI to passengers pertain to waiting at the bus stop. A difference of means analysis of gain scores of “usual” wait times revealed a significantly larger decrease (nearly 2 min) for the experimental group than the control group. Moreover, analysis of the gain scores of feelings while waiting for the bus revealed significant decreases in levels of anxiety and frustration and increases in levels of productivity and safety during the daytime associated with the use of RTI. This is further supported by significant increases in satisfaction with “how long you have to wait for the bus” and “how often the bus arrives at your stop on time” for the experimental group compared to the control group. Taken together, these three analyses provide strong evidence that RTI significantly improves the passenger experience of waiting for the bus, which aligns with prior studies of RTI in other cities. Two respondents summed up these benefits in an open-ended question at the end of the post-wave survey by writing the following:

“Brilliant tool! ... Often when catching busses along their route, I felt like it was the ‘wild, wild, west’ with times, busses not showing, etc. OneBusAway helped make everything much more sensible and relaxing!!”

“Please put the OneBusAway program into affect as soon as possible. There is nothing more frustrating than waiting on a bus that is running real late or not going to show at all. And the whole time you’re stuck out in the street just waiting and waiting.”

While the experience of waiting for the bus appears to have been significantly improved by using RTI, evidence supporting changes in the number of transit trips associated with RTI was limited for this sample of existing transit riders. The difference of mean gain scores in weekly trips showed that the experimental group did not have a significant change compared to the control group. A largely transit-dependent population of riders in Tampa could be contributing to this limited increase. Despite this, a sizable percentage (39%) of the experimental group stated that they ride the bus more frequently since they began using RTI. This is likely due to either an affirmation bias on behalf of the respondents and/or an insufficient scale of measurement used by the researchers.

In addition to these findings, a key contribution of this research is demonstrating that controlled behavioral experiments can be used to evaluate web and mobile applications used by transit travelers. This experiment was particularly distinctive in its ability to (largely) limit the use of the smartphone applications to the experimental group. Hopefully, the successful implementation of this behavioral experiment will lead to the increased use of before–after control group research designs to evaluate new information and communications technologies used by travelers in the future.

Acknowledgments

This work was funded by the National Center for Transit Research (NCTR), the National Center for Transportation Systems Productivity and Management (NCTSPM), and an US DOT Eisenhower Graduate Fellowship. The authors are very grateful to Hillsborough Area Regional Transit for their support of the OneBusAway project, particularly Shannon Haney. They would also like to thank the bus riders in Tampa who agreed to participate in this study. Finally, the authors owe a tremendous amount of gratitude to the many people who have contributed to OneBusAway open source project over the years, particularly Brian Ferris who created the original instance of OneBusAway in Washington.

References

