Collier County Transportation Disavantaged System Evaluation and Enhancement Study

CUTR

Follow this and additional works at: https://scholarcommons.usf.edu/cutr_reports

Scholar Commons Citation
https://scholarcommons.usf.edu/cutr_reports/33

This Technical Report is brought to you for free and open access by the CUTR Publications at Scholar Commons. It has been accepted for inclusion in CUTR Research Reports by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.
COLLIER COUNTY
TRANSPORTATION
DISADVANTAGED SYSTEM
EVALUATION AND ENHANCEMENT
STUDY

Technical Memorandum No. 1:
Community Transportation Coordinator Evaluation

Prepared for the
Naples (Collier County)
Metropolitan Planning Organization

by the
Center for Urban Transportation Research
College of Engineering
University of South Florida

July 16, 1994
Naples (Collier County)
Metropolitan Planning Organization
2800 North Horseshoe Drive
Naples, Florida 33942
(813) 643-8300

Project Manager: Diane Holling

Center for Urban Transportation Research
University of South Florida
4202 E. Flower Avenue, ENB 118
Tampa, Florida 33620
(813) 974-3120

Director: Gary L. Brosch
Project Director: Rosemary G. Mathias
Project Manager: R. Benjamin Gribbon
Project Staff: Fredalyn Frasier
Joseph Hagge
Kathryn Colestock

Reviewers: F. Ron Jones
Beverly Ward
Preface

This is the first of three technical memoranda produced by the Center for Urban Transportation Research (CUTR) for the Naples (Collier County) Metropolitan Planning Organization, as part of the Collier County Transportation Disadvantaged System Evaluation and Enhancement Study.

Technical Memorandum No. 1 summarizes an evaluation of the community transportation coordinator. Technical Memorandum No. 2 will summarize collected public input. Technical Memorandum No. 3 will present a summary of an analysis of operations. A Final Report will summarize the entire project and suggest recommended actions.
Acknowledgments

CUTR would like to express its appreciation to the following organizations and people who assisted in this project by providing valuable information or assistance:

Naples (Collier County)
Metropolitan Planning Organization
Jeffory Perry, MPO Coordinator
Diane Holling, Project Manager

Florida Department of Transportation
Fran Theberge, Public Transportation Specialist
Richard Shine, MPO Liaison

Southwest Florida
Regional Planning Council
Julia B. Davis, TD Planner

Training and Educational Center for the Handicapped, Inc.
John J. Lawson, Executive Director
Laura P. Altaratz, Assistant Executive Director
Nick Whitney, TD Program Manager
Cheryl Whitney, Office Supervisor
Greta Vincent, Accountant
TECH Staff
Table of Contents

Introduction .. 1
Overview of the CTC ... 4
Competition .. 6
Coordination .. 9
Cost Effectiveness and Efficiency 11
Quality and Training ... 15
Availability of Services .. 24
Funding ... 28
Accountability .. 30
Peer Comparison ... 31
Conclusions .. 34
Endnotes ... 36
Introduction

In August 1990, the Collier County Transportation Disadvantaged Local Coordinating Board (LCB) recommended the Training and Educational Center for the Handicapped, Inc. (TECH) to the Naples (Collier County) Metropolitan Planning Organization (MPO) to be the Community Transportation Coordinator (CTC) for Collier County. Following the recommendation of the MPO, the Florida Transportation Disadvantaged Commission entered into a Memorandum of Agreement with TECH to provide services for the transportation disadvantaged (TD) population. TECH has served as the transportation coordinator and provider since 1991. This transportation service is known as Community Transportation.

Earlier this year, the MPO contracted with the Center for Urban Transportation Research (CUTR) to conduct a Collier County Transportation Disadvantaged System Evaluation and Enhancement Study. The primary goals of this study are to determine how well the current system meets the needs of the transportation disadvantaged public and to develop alternatives to improve and enhance the system, while identifying any opportunities that these enhancements might provide for the general, non-TD, public. The study was recommended following a Transit Feasibility Study conducted in 1993, during which it was suggested that enhancing the CTC might help to meet some of the potential need for public transportation.

This study includes four tasks. Task 1 is a general evaluation of TECH as the CTC in Collier County. This task helped to familiarize CUTR staff with Community Transportation in Collier County, identified some of the important issues to be considered in subsequent tasks, and identified areas for improvement. This technical memorandum summarizes Task 1.

Task 2 is the gathering of public input regarding Community Transportation, which will be summarized in Technical Memorandum No. 2. Task 3 is a more detailed analysis of Community Transportation operations, which will be summarized in Technical Memorandum No. 3. A summary of the entire project and recommendations will be presented in a final report, to be prepared in Task 4.

* The Florida Transportation Disadvantaged Commission was renamed the Commission for the Transportation Disadvantaged in 1994.
Evaluation Method

In Task 1 of this study, CUTR conducted a general evaluation of TECH as Collier County’s CTC, using the new Evaluation Workbook for Community Transportation Coordinators and Providers in Florida as the tool for conducting this evaluation. This evaluation model was recently developed by CUTR for the Florida Commission for the Transportation Disadvantaged (CTD) as a standard, but not yet required, evaluation tool. The model evaluates CTCs in the following areas:

- Competition;
- Coordination;
- Cost-effectiveness and efficiency;
- Quality of service (including vehicles and safety);
- Training;
- Availability of service;
- Funding and accountability (including administrative procedures); and
- Comparison of the CTC to peers.

The evaluation model employs numerous qualitative and quantitative measures to evaluate the success of the CTC from one year to the next. It is flexible and designed to identify areas in which a CTC can improve. The model does not hold the CTC to fixed standards and is not yet required, but does reflect the priorities of the Commission for the Transportation Disadvantaged. It should be noted that, as a new instrument, the Evaluation Workbook was not previously available to TECH or incorporated into its defined evaluation criteria.

This evaluation was undertaken by CUTR in addition to the annual CTC evaluation conducted by the LCB Evaluation Committee, which was based on criteria and priorities established during the previous year. The model may, however, be applied by the LCB in future years.

The evaluation is based on data reported using existing documents, such as the Statewide Operations Report and data collected by CUTR during an on-site visit to TECH, April 11th to 15th. The evaluation focuses on the 1993-94 fiscal year (July 1, 1993 to June 30, 1994). The previous fiscal year (FY 1993) is used for comparison.
Because the evaluation was conducted during the fourth quarter of the fiscal year, the evaluation relies on, and includes:

- Year-to-date (YTD) data from July 1, 1993 to March 31, 1994 (YTD 1994);
- Projections for the total fiscal year (Projected FY 1994); and
- Preliminary fiscal year data (FY 1994) where available.

This technical memorandum presents general findings, suggests areas for improvement, and identifies areas meriting additional research. The remainder of the report is organized into sections that match the areas evaluated. Each section summarizes the major findings, followed by concise recommendations. Recommendations include action items to be undertaken by CUTR in future tasks of this project.

Supporting data and source information are shown as numbered endnotes at the back of this document.
Overview of the CTC

This overview provides a general context for the evaluation summary presented in the following sections.

The CTC in Collier County is the Training and Educational Center for the Handicapped, Inc. (TECH). Transportation service is provided by "Community Transportation," a division of TECH. TECH's executive director is John J. Lawson, who served as the primary contact for this evaluation. TECH has been the CTC since December 1990.

Several important characteristics describing Community Transportation are outlined below.

- TECH serves all of Collier County, providing some out-of-county service for certain clients. Collier County is large, consisting of 2,026 square miles, and primarily rural, having relatively low population densities throughout much of the county.* This large service area with low population densities can make efficient transportation service difficult to provide, except in parts of the Naples urbanized area.¹

- TECH is a private non-profit organization, and provides all transportation services directly. TECH registers clients, accepts reservations, and delivers each trip, with no transportation contractors.

- Community Transportation is growing rapidly. TECH provided 79,224 passenger trips in FY 1993, and has provided more than 137,000 passenger trips in FY 1994.² This growth (nearly 75 percent) has had a clear impact on the CTC, as identified later in this document.

*The Collier County total area including water is slightly larger (2305 square miles). Supporting area and population figures are shown in Endnotes at the back of this document.
• TECH operates demand responsive paratransit service throughout the county. In addition, TECH runs a modified fixed-route transportation service open to the general public in the city of Immokalee; designed initially as a service for a specific location, the fixed-route service is now funded primarily by Section 18 and Medicaid funding.* This service and the feasibility of similar services elsewhere in Collier County will be examined in Task 3 of the study.

*Service was created to serve the relocated Marion Feathers Medical Center. The Center identifies trips eligible for Medicaid.
Competition

The Commission for the Transportation Disadvantaged allows CTCs to broker all transportation, to contract out some of the transportation, or to provide all of the coordinated trips. Although the Commission does not require the involvement of private for-profit operators in the delivery of service, it does encourage the use of competition where it can help reduce costs and improve service quality.

Transportation Provided in Collier County

- TECH provides all coordinated TD passenger trips in Collier County and has no transportation operators under contract.*

- There are at least 60 other organizations in Collier County that provide transportation to the general public or to persons who are transportation disadvantaged. Included are 46 for-hire operators and 14 public and private social service organizations that provide transportation to clients. TECH, therefore, has a number of organizations that could be considered as potential contract operators, although only a handful may be appropriate.³

- Agencies that provide transportation to their own TD clients also may be considered for potential coordination contracts, as discussed in the following section on Coordination.

Potential for Subcontracting

- TECH issued a national request for proposals (RFP) for transportation providers in early 1991 before full service commenced. Ultimately, none of the respondents were satisfactory and the LCB concluded that TECH should serve both as CTC and provider in Collier County.

* TECH provides all Medicaid trips with one exception. The Agency for Health Care Administration (AHCA) contracts directly with Maxitaxi/Handicab for all Medicaid stretcher transportation; TECH has agreed to this arrangement by memo.
• TECH also has negotiated with specific private for-profit operators on several occasions, without arriving at mutually acceptable terms. A contract was signed with Wheeled Transport in 1992, but the firm ceased operations immediately after the contract was signed. In February 1994, TECH attempted to negotiate with Maxitaxi/Handicab to enter into a coordination agreement for Medicaid stretcher service. The effort was not successful; paperwork required to meet Rule 14-90 safety requirements was cited as a key reason by the CTC.4

• Florida Department of Transportation (FDOT) and Federal Transit Administration (FTA) grant application procedures required private sector involvement. Pursuant to these requirements, TECH annually notifies all private for-profit operators regarding its Section 18 grant application. TECH requests each operator to indicate by letter that they are, in this case, not interested in providing service under Section 18. Thus, some minimal level of communication is maintained between TECH and the private operators.

• TECH has indicated that contracting out services has not yet been necessary as TECH has been able to expand capacity as needed, up to the limits of funding. Recent negotiations (with Maxitaxi) suggest that TECH would need to identify a specific portion of service to contract out, such as a particular area or type of client.

• TECH believes that the tourist and seasonal (winter) population of Naples creates a high profit-margin for the for-profit operators that would be difficult to achieve for TD transportation, since currently low rates would need to accommodate not only the cost of coordinating each trip and the operator's cost, but also the operator's profit. TECH also speculates that private for-profit interest in TD transportation may be limited to the summer season when there is excess vehicle capacity.

• The private for-profit industry has indicated that safety and training standards imposed by TECH are prohibitive. These safety standards are examined in more detail under Quality and Training.

* The referenced requirements for grant application may change.
• TECH does competitively contract out large vehicle maintenance projects, and vehicle and sign painting.

Recommendations

• TECH should continue to look for services that could be contracted out, but should do so only if feasible in terms of favorable cost and quality or as necessary to ensure availability of service.

• The LCB and TECH should identify potential barriers to the use of contract operators and determine whether any changes in policy are necessary.

• CUTR will solicit the perspective of the for-profit industry regarding Community Transportation in Task 2 of this study.
Coordination

Florida Statute defines coordination as follows:

"Coordination means the arrangement for the provision of transportation service to the transportation disadvantaged in a manner that is cost-effective, efficient, and reduces fragmentation and duplication of services."*

The statute further charges the CTC with ensuring that coordinated transportation services are provided to the TD population in a designated service area. Several means are available to coordinate service, including purchase of service (POS) contracts, coordination contracts, and brokerages with operator subcontracts. The involvement of the LCB, the Designated Official Planning Agency (DOPA), and communication among organizations and users also are important elements in coordination, as are many elements of daily CTC operations.

The role of TECH with regard to coordination in Collier County is outlined below.

- TECH had 20 POS contracts, in addition to its TD and Section 18 service. There are some services provided via purchase order or letter of authorization.⁵

- Except for stretcher service, the Agency for Health Care Administration (AHCA) purchases all Medicaid transportation service from TECH.

- TECH has no coordination contracts with organizations that provide their own transportation to some of their clients who may be transportation disadvantaged. At this time neither TECH nor the agencies that provide their own transportation perceive sufficient incentives to enter into coordination contracts. TECH would, however, benefit from including the additional service and vehicle statistics among the total reported coordinated trips.

- Service coordination and public information seem to be well-coordinated through TECH's communication efforts. TECH distributes brochures to 18 locations, speaks at different centers about Community Transportation, and surveys 52

* Chapter 427 Part 1, F.S. [427.011(11)].
organizations quarterly about service and information needs. These brochures are not always kept in stock at their distribution points, however.

- The service that TECH does provide is in many ways well-coordinated, in part because the CTC is a sole-provider. A single telephone number for Community Transportation directs calls as needed via a menu. Each coordinated trip can be easily scheduled, monitored, and reconciled.

- Transportation as a whole for the TD population in Collier County, however, is somewhat fragmented. This is due in part to the absence of coordination contracts with other agencies.

- Some aspects of service provided by TECH also are limited in terms of coordination because of the number of POS contract organizations that sponsor program trips. Because agencies arrange transportation on behalf of clients, there is no direct communication between the passenger and TECH, except for TD and Section 18 trips booked by the passenger.

Recommendations

- TECH should establish a process to ensure that brochures are always available at appropriate distribution points.

- The LCB and TECH should identify barriers to establishing coordination contracts and determine what action may be taken to reduce such barriers, in order to enter into coordination agreements.

- Input from passengers and agencies, those that purchase service and those that provide their own, will be solicited by CUTR during Task 2.

* TECH also surveys users, about 10 percent, semi-annually.
Cost Effectiveness and Efficiency

This section of the evaluation addresses the effectiveness and efficiency of Community Transportation by comparing finances and operations. The objectives of the examination were twofold. First, to identify general trends during FY 1993 and FY 1994 by examining specific measures and, second, to identify areas to target for ensuring continued system efficiency. Baseline data that can be used for future evaluations also will be established. Other important service characteristics will be examined in other sections of this document.

This analysis relies heavily on comparing service statistics and financial figures for FY 1993 and FY 1994. The figures for FY 1994 are preliminary totals. Several significant trends were observed between FY 1993 and FY 1994 data. These observations are discussed below.

- Overall, TECH has experienced a significant increase in the number of passenger trips provided. In FY 1994, TECH surpassed the number of trips it provided in FY 1993 by approximately 73 percent. This point is illustrated in the following table.

<table>
<thead>
<tr>
<th>TECH Service Statistics</th>
<th>FY 1993</th>
<th>FY 1994</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Trips</td>
<td>79,244</td>
<td>137,115</td>
<td>+73%</td>
</tr>
<tr>
<td>Vehicle Miles</td>
<td>665,037</td>
<td>798,375</td>
<td>+20%</td>
</tr>
<tr>
<td>Revenue Miles</td>
<td>430,267</td>
<td>525,241</td>
<td>+22%</td>
</tr>
<tr>
<td>Deadhead Miles</td>
<td>234,770</td>
<td>273,134</td>
<td>+16%</td>
</tr>
<tr>
<td>Number of Vehicles</td>
<td>17</td>
<td>27</td>
<td>+59%</td>
</tr>
<tr>
<td>Operating Expenses</td>
<td>$776,488</td>
<td>906,391</td>
<td>+17%</td>
</tr>
</tbody>
</table>

- The FY 1994 trip volume is primarily attributable to TD trips (35,389), the new Immokalee bus route (30,887), Medicaid (22,730), and Tri-County Senior Services (20,491). This is shown in the table below.
<table>
<thead>
<tr>
<th>Program</th>
<th>Revenue Miles</th>
<th>Passenger Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Girls, Inc.</td>
<td>3,781</td>
<td>4,804</td>
</tr>
<tr>
<td>Immokalee Bus Route</td>
<td>19,992</td>
<td>30,887</td>
</tr>
<tr>
<td>Medicaid</td>
<td>203,644</td>
<td>22,773</td>
</tr>
<tr>
<td>Collier County Parks & Recreation</td>
<td>1,028</td>
<td>3,782</td>
</tr>
<tr>
<td>Parents as Teachers</td>
<td>739</td>
<td>2,053</td>
</tr>
<tr>
<td>Strive Education, Job Club</td>
<td>20,560</td>
<td>5,617</td>
</tr>
<tr>
<td>Strive to Work</td>
<td>90,862</td>
<td>20,491</td>
</tr>
<tr>
<td>Tri-County Senior Services</td>
<td>29,060</td>
<td>9,549</td>
</tr>
<tr>
<td>Transportation Disadvantaged</td>
<td>146,171</td>
<td>35,389</td>
</tr>
<tr>
<td>OTHER & Unassigned</td>
<td>9,304</td>
<td>1,770</td>
</tr>
</tbody>
</table>

- The Immokalee bus route accounted for approximately 22 percent of all passenger trips, but only four percent of revenue miles, greatly contributing to improved system efficiency overall. Calculations of passengers per revenue mile without the Immokalee route included, however, still reveals some increase in efficiency.

- Interestingly, a close examination of quarterly data revealed a slight decrease in vehicle miles. During the third quarter of FY 1994, more trips were made with fewer total vehicle miles and fewer deadhead miles. These results suggest both improved vehicle utilization and mileage utilization. This observation, considered with the steady increase in passenger trips delivered, indicates increased efficiency in the system.

- Two known factors contributed to the improved efficiency in mileage: both the pool of potential riders (registrants) and the resulting number of trips requested increased, which equates to more clients available on a given route. The third quarter decrease in vehicle miles also may be attributed to the fact that during the previous quarter TECH experienced a shortage of drivers and as a result scheduling became a critical operational concern. The tighter scheduling and the associated administrative changes because of fewer drivers may have been the
major contributors to the unexpected by-product of decreased vehicle and deadhead miles.

- Only one quarter actually showed a decrease in vehicle miles with an increase in revenue miles — such a decrease indicates that greater scheduling efficiencies are possible.

- The large increase in passenger trips was accompanied by an increase in operating expense of $129,903, only a 17% increase.

Other areas that indicate improved cost-effectiveness and efficiency include: operating cost per passenger trip and operating cost per vehicle mile. These measures (based on preliminary figures for 1994) are summarized in the following table.9

<table>
<thead>
<tr>
<th>TECH Cost Performance</th>
<th>FY 1993</th>
<th>FY 1994</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Cost/Passenger Trip</td>
<td>$9.80</td>
<td>$6.61</td>
<td>-33%</td>
</tr>
<tr>
<td>Operating Cost/Vehicle Mile</td>
<td>$1.17</td>
<td>$1.14</td>
<td>-3%</td>
</tr>
<tr>
<td>Passenger Trips/Vehicle Mile</td>
<td>0.12</td>
<td>0.17</td>
<td>+42%</td>
</tr>
<tr>
<td>Admin. Cost % of Total Expense</td>
<td>10.7%</td>
<td>13.2%</td>
<td>-23%</td>
</tr>
</tbody>
</table>

- TECH has experienced a significant decrease in its cost per passenger trip. Again, TECH’s significant growth in ridership with a limited increase in funding is the primary factor associated with this improved cost-effectiveness.

- The operating cost per vehicle mile is slightly lower in FY 1994 as well.** Generally, a decreasing value for this measure suggests that overall cost-efficiency is improving. This decrease, in part, is the result of fixed costs being spread over more vehicle miles.

*This period also experienced decrease in on-time performance, which is addressed later in this document under Quality and Training.

**Cost per revenue mile also decreased slightly.
• In 1994, TECH provided more passenger trips per vehicle mile. This indicates increased service effectiveness, providing more service (trips) per unit of effort (vehicle miles).

• Total expenses have decreased in several areas from FY 1993 to FY 1994 including: benefits, contractual services, repairs to vans and equipment leases. Total expenses have increased in most areas, including: salaries, travel, supplies, insurance, occupancy, administrative, and other expenses.

• As TECH has grown, its administrative costs have increased. Administrative costs were approximately nine percent in FY 1993. The FY 1994 figure of 13 percent is a significant increase over FY 1993. Fluctuations, and sometimes increases, in the proportion of administrative costs can be expected as an organization grows, and are appropriate if they cause the total expense per trip to decrease.10

• One way of measuring changes in costs is to examine each cost item in terms of unit of output. The cost per trip has decreased or remained about the same for all expense line items, except for several minor administrative expenses: an insurance package for the building and inventory, administrative travel, rent communication, and administrative contractual services (including cleaning for the new building and computer programming). Most of these costs can be attributed to a new building Community Transportation occupied in FY 1994.

Recommendations

• Based on successes in decreased deadhead miles, TECH should look for ways to improve scheduling efficiencies, while maintaining service quality.

• TECH should continue to monitor and control administrative costs closely to ensure that they are offset by resulting improved efficiencies and quality.

• TECH should look for locations where the success of the Immokalee bus route may be replicated. CUTR will assist with this effort in Task 3 of the study.
Quality and Training

A goal of any CTC should be to ensure the provision of quality service. This goal should be supported by several specific objectives:

1. Encourage courteous customer relations and passenger comfort;
2. Provide service that minimizes customer travel and wait times; and
3. Provide safe and reliable service.\(^\text{11}\)

In Task 1 of this study, CUTR examined seven specific aspects of quality and training:

- On-time performance;
- Complaints and grievances;
- Vehicle maintenance and comfort;
- Public information and communication;
- Training;
- Safety and risk management; and
- Quality management and improvement.

Key findings are outlined below.

On-Time Performance

On-time performance is a function of the scheduled pick-up time, pick-up window, driver arrival time, dwell time, the actual boarding time, actual drop-off time, and appointment time. It also is a function of scheduling, communication, the environment, and other factors.

These terms are defined as follows. The scheduled pick-up time is the precise time that the transportation provider expects to pick up the passenger. The pick-up window establishes the number of minutes before or after the scheduled pick-up time during which the passenger should expect to be picked up. The driver arrival time is the time that the vehicle arrives on location to pick up the passenger. The dwell time is the length of time the driver will wait for the passenger to appear during the pick-up window. The actual boarding time is the time the passenger boarded the vehicle. The actual drop-off
time is the time the passenger arrived at the destination. The appointment time is the
time at which the passenger needed to be at his/her destination."

- TECH has a defined pick-up window of 20 minutes before and 20 minutes after
the scheduled pick-up times. The pickup window is necessary in order to ensure
that passengers and the transportation provider have the same expectation
regarding the actual pick-up time, which may vary from the more precise
scheduled pick-up time. A defined pick-up window is also a prerequisite for
measuring on-time performance.

- TECH does not monitor on-time performance on a regular basis. While there is
no industry-wide formula for determining "on-time" performance, the process
should consider the actual appointment time."

- TECH considers the appointment time only in determining if trips are on time,
but does not consider the actual pick-up time.

- Based on appointment times only, TECH’s on-time performance for March 1994
was approximately 68 percent, which is very low.*** On-time performance
generally has decreased as ridership has grown over time. In FY 1992 average
on-time performance was 74 percent, and in FY 1993 it averaged 72 percent.****

- The low on-time performance seen in March 1994 corresponds to a shortage of
drivers and improved efficiency, discussed in this document under Cost-
Effectiveness and Efficiency. The high volume of trips and successes in
efficiency and cost-effectiveness seem to have been partly at the expense of on-

* See the Evaluation Workbook for Community Transportation Coordinators and Providers in Florida for
additional information on measuring on-time performance.

** A recommended method of measuring on-time performance is provided in the Evaluation Workbook.
There also is no established standard for travel times (trip lengths). Trip lengths are not analyzed within the
scope of this evaluation.

*** Based on analysis of 3,882 pre-scheduled trips provided during March 1994.

**** These figures, based on appointment times only, are based on the busiest month in each fiscal year
(June 1992, June 1993, and March 1994). Usually months with fewer trips should have the same or better
on-time performance.
time performance. This is common when resources and capacity are strained to accommodate more passengers on the same or fewer routes and vehicles.

- Complaints, discussed below, indicate that passengers also see timeliness as a significant problem. TECH's policy regarding scheduling and on-time goals (i.e. to meet the appointment time) may need to be better communicated to passengers.

Complaints and Grievances

- The process for handling and tracking complaints and grievances has been revised recently to meet Commission and *Evaluation Workbook* guidelines. An evaluation of the process reveals that the revised process is excellent. The number of complaints can be expected to increase in the short-term, however, as the system gets better at recording and tracking them. About 25 percent of complaints are resolved at the time they are placed, the remainder are resolved shortly thereafter.

- Most complaints are from users and drivers. The largest complaint categories are timeliness, passenger behavior, and driver behavior. The high quality of training and driver standards, however, suggests that these complaints may be isolated incidents, rather than patterns. The number of complaints about passenger behavior, generally from drivers, suggests a need for better communication to both drivers and passengers regarding passengers' rights and responsibilities (i.e. what passengers can expect and what is expected of passengers).

- During FY 1994 there were no grievances.*

- A common measure of complaints, complaints per 1000 trips, is quite low for TECH (0.3 in YTD 1994, and 0.2 in FY 1993). No changes are required related to complaints, other than targeting on-time performance and communicating passengers' rights and responsibilities.

* Since July 1992, only one complaint could have been classified as a grievance (May 1993). This complaint, related to cancelling appointments for late trips, was discussed by the grievance committee and resolved by establishing new procedures. The complaint, brought first to the attention of planning staff and the LCB, went directly to the grievance committee.
Vehicle Maintenance and Comfort

- Although some of the fleet is aging, the vehicles are in good repair and are frequently cleaned. Only one vehicle does not have air-conditioning,* and all vehicles have safety equipment. Standard operating procedures include a good pre-trip inspection of the vehicle and its equipment.

- One way to measure the effectiveness of the preventive maintenance program is by examining the average number of miles traveled between roadcalls. In FY 1994, TECH achieved 26,612 vehicle miles between roadcalls, compared to 24,631 vehicle miles between roadcalls in the previous year (FY 1993). This is consistent with the addition of a mechanic in May 1993. This improvement was limited by defects in new vehicles, acquired in 1993, which frequently required road calls.** Discounting these road calls that were not attributable to TECH’s maintenance program yields 42,020 miles between roadcalls, in FY 1994, showing great improvement. An inventory of the current fleet is shown under Endnotes. 12

Public Information and Communication

- TECH frequently makes presentations about the service, has standard information distribution sites that continue to grow in number, and communicates with passengers via direct mailing.

- Each quarter, TECH surveys passengers and/or organizations whose clients use Community Transportation. Through the Section 18 funding process, TECH communicates with for-profit operators at least once a year. Other than ensuring the passengers’ rights and responsibilities are made clear, no specific improvements in communication are needed. Communication should remain a high priority.

* No air-conditioning installed in school bus.

** The new vehicles had defects related to alternators and wheelchair lifts that could not immediately be replaced or repaired by staff.
• Some communication efforts are documented; however, a specific public information process could be established to maintain communication, to gauge the interest of private-for-profit operators in participating, to inform social service agencies, and to explain coordination contracts.

Training

• TECH has an excellent driver training program.

• All drivers are required to hold a Commercial Driver’s License (CDL). In addition, they are required to meet a substantial background check, including fingerprinting, a local records check, a Health and Rehabilitative Services (HRS) background check, an affidavit of good moral character, and a DAC report. This prerequisite also exceeds FAC 14-90 requirements.

• The training program in effect during most of FY 1994 provided vehicle operators with 26 hours of initial training, including orientation, wheelchair management, observation, driving under supervision, emergency and accident procedures, passenger relations, radio usage, map reading, vehicle operation, first aid, CPR, and the Special Transit and Rural Transit Driver Training Program (STARTS). As of early summer 1994, all drivers also receive 16 hours of additional defensive driving, passenger assistance techniques, and sensitivity training. In addition, drivers receive post-accident training and in-service evaluations.

• Managers of Community Transportation are able to attend relevant conferences and workshops, including the national Community Transportation Association of America (CTAA) conference.

• In addition, all other Community Transit staff generally receive training and/or additional training when appropriate training is available.
Safety and Risk Management

- The accident report forms, process, and review have been recently improved; the current practice is excellent. The results are impressive, as TECH has averaged approximately one accident per 100,000 vehicle miles for the past two years. Other CTCs have achieved similar results, but the specific measurement depends highly on how accidents are counted (e.g. some transportation providers count only accidents over a certain dollar amount in damage). According to policy, any type of accident is counted as such.

- TECH recently added defensive driving and passenger assistance techniques for operators, further improving the safety program.

- TECH maintains liability insurance of $1 million per person, and $2 million per occurrence. In addition, TECH, Inc. has a $3 million general liability umbrella.* This coverage greatly exceeds the minimum coverage required for CTCs by the Florida Commission for the Transportation Disadvantaged, but is recommended.**

- TECH has a written System Safety Program Plan (SSPP) that meets and exceeds the requirements of the Florida Administrative Code (FAC) Chapter 14-90. The training requirements of FAC 14-90, for example, could be met with a less comprehensive training program. TECH also conducts a substantial background check on new drivers that is more stringent than FAC 14-90 requires.

FAC 14-90 allows separate safety standards to be established for private contract bus systems (operators), provided they meet the minimum FAC 14-90 requirements. There are areas that, for organizations under contract, could be set to the minimums, yet still meet legal standards.*** For example, private operators

* This includes coverage for vehicle accidents.

** Rule 41-2.006 (R. 1/94) requires minimum liability of $100,000 per person and $200,000 per incident, which are comparable to 768.28(5), Florida Statutes, limits for all transportation service purchased or provided for the transportation disadvantaged through the CTC.

*** Specific purchase of service contracts may, however, pass through requirements more stringent than FAC Chapter 14-90.
may not need CDLs for their vehicles. The high standards used by TECH, however, are appropriate and should be encouraged.

Quality Management and Improvement

- TECH has an informal quality improvement program that includes frequently implementing system improvements and looking for new ways to improve its operations. Thus, all employees are in some way affected by quality improvement.* All employees are trained in areas that can enhance performance in their areas of responsibility.

- TECH has a computerized management information system (MIS) that collects and reports appropriate information for monitoring service. This system could benefit from additional special reports and calculated performance measures as indicated throughout this document and in the section on Accountability.

- Many improvements to date have been in areas such as training and maintenance, which are not directly obvious to the passenger.

- During FY 1994, TECH did not have any specific plans in place for improvement, but continued to make improvements as they were identified through the annual evaluation prepared by the LCB, user surveys, management creativity, and other input.** These improvements are then written into appropriate documents. As long as improvements continue to be generated system-wide, no more formal quality improvement "program" is necessary, except as noted herein.

- TECH does not have specific minimum performance standards, and could benefit from additional performance measures, in order to monitor success. Reports and minimum expectations can be established for measures such as: percentage of trips completed on time, missed trips, revenue miles related to vehicle miles,

* The resulting standards and practices are generally documented. The informal improvement process is not documented per se, although the MOA Service Plan includes goals and objectives.

** More formal plans may be established for FY 1995.
passenger trips per mile, cost per mile, cost per trip, average call hold and processing time, trip lengths, and many others.

Recommendations

- On-time performance should be monitored via regular reports, in terms of scheduled vs. actual pick-up times, and in terms of appointment vs. actual drop-off time.

- A standard for on-time performance should be developed and set as a goal. Initially, the standard for appointment times should be high, but reasonably achievable, such as 85 percent. As on-time performance improves, a standard also should be set for pick-up times. Due to low-densities and long travel distances, it can be expected that high on-time performance with reasonable trip lengths may not be achievable without additional cost. Some improvement may be realized through improved scheduling efficiencies, however. This possibility will be examined in Task 3 of this study.

- The pick-up window should be better communicated to passengers once TECH is better able to ensure pick-ups within that window (i.e. improved on-time performance).

- The specific complaints in each category should continue to be examined for trends that can be targeted for improvement.

- TECH should ensure that the rights and responsibilities of passengers are well-communicated to drivers, passengers, and those that arrange transportation for passengers.

- TECH, while continuing to improve system-wide, should focus particular attention on improvements visible to passengers, such as communication and on-time performance. Good communication should remain an important goal.

* The Florida Five-Year TD Plan and the Evaluation Workbook discuss a number of performance measures. Many other resources of performance monitoring are also available.
• TECH should consider establishing a documented public information process, in coordination with the LCB, that targets passengers, transportation operators, and social service agencies.

• The views of passengers, organizations, and transportation providers regarding communication will be collected through Task 2 of this study.

• TECH's current safety and training programs should be continued.

• TECH's safety standards should be further analyzed to provide the LCB with sufficient information to determine what standards, if any, might be relaxed to encourage coordination and transportation operator contracts (as needed). At the same time, however, the use of TECH's high safety standards should be encouraged.

• Quality management should be improved by creating additional special reports and performance measures as indicated throughout this technical memorandum.

• Specific performance standards (minimum thresholds) and objectives should be established for a variety of performance measures in order to monitor success, especially those suggested within this memorandum and those measures already used by TECH.
Availability of Service

The maximization of service to the transportation disadvantaged population is a major goal for a CTC. This goal can be supported by several objectives:

1. Provide services to meet the demand for sponsored trips;
2. Provide services to meet the demand for non-sponsored trips; and
3. Improve passenger awareness of TD transportation services.\(^{13}\)

The overall availability of the service provided represents an important component of this evaluation; it also is one of the most challenging system elements to measure.\(^{1}\) This section of the evaluation uses several key measures recommended in the *Evaluation Workbook* to examine the availability of TD transportation in Collier County. The measures address the following four service availability components:

- Demand met for program and general trips;
- Percentage of requests met;
- Hours of operation; and
- Ability to make reservations.

An important component in measuring the availability of service is the estimated demand for service to which the number of trips actually provided is compared. The total trip demand is considered to be the sum of demand for program trips (trips needed in order to participate in a specific program) and general trips (all other trips needed by the TD population). There are many accepted means of calculating demand for TD transportation. Any agreed upon method may be used for year-to-year trend comparisons. CUTR has developed a method for estimating demand recommended for use with Florida TD transportation.\(^{12}\)

\(^{1}\) A more detailed analysis of demand and service available in specific areas will be conducted by CUTR in Task 3 to identify appropriate strategies for service enhancement and expansion.

\(^{12}\) An abbreviated calculation of general demand is provided for all counties in the SOR, a more detailed methodology is recommended in *Methodology Guidelines forForecasting TD Transportation Demand at the County Level*. CUTR has used the more detailed methods.
• The TD trip demand in Collier County for FY 1993 and FY 1994 is estimated, by CUTR, to have been 202,881 and 260,090 respectively. On the supply side, TECH provided 79,244 trips in FY 1993 and 137,115 in FY 1994.14

• The trip data were computed to estimate the percentage of trip demand met for each of the two periods. In FY 1993, the estimated demand met was 31 percent and the YTD 1994 demand met was estimated at 53 percent. This increase indicates that TECH’s increased volume of service is meeting a larger portion of the demand for TD services.

• The number of trips provided by TECH increased by 73 percent between FY 1993 and FY 1994.

• Seasonal variations in demand indicate that it would be helpful to distinguish summer programs from 12-month programs for the purpose of increasing the usefulness of reports in service planning and analyzing demand.

• From FY 1993 to FY 1994, TECH experienced a 26 percent increase in the amount of trips denied. This indicates improved tracking. It also can indicate system shortcomings, such as insufficient communication with the public regarding what trips are eligible or what services are provided, or more typically, increased awareness of the existence of service and subsequent requests for service relative to limited funding. In both years, however, TECH provided 99 percent of the trips requested.15

• TECH currently uses a self-certification process for all TD registrants. The registration process is relatively simple and there is generally little delay (two or three days) between the time an application is submitted and the time a user receives his/her identification card through the mail. (Medicaid clients are verified at the time of their call through a computer terminal linked with the regional Medicaid office.)

* Trips Requested is the sum of provided and denied trips, as reported by TECH. Additional information on trip denials is provided under Endnotes.
• The level of convenience associated with access to the system is quite high. TECH has a reservation system that is clearly defined and organized, and is very responsive to its clients.

• Currently, the total number of registered users (active and nonactive) is not determined or monitored, even on an annual basis. The collection of such information would prove helpful in estimating yearly changes in TD registrant population, which is an indication of the number of people in the population the service is reaching. This information would be helpful primarily for the purpose of reporting and future evaluation of service availability.

• TECH’s promotional and out-reach efforts are considerable. Information regarding TD services is distributed throughout the community. Applications are distributed in local libraries, vocational training facilities, and on the TECH vehicles. Maintaining a high profile and level of communication with the client base will become increasingly important as the ridership continues to increase. 16

• Additional TD Trust Fund monies are being made available (discussed under Funding in the next section). Considering TECH’s rapid growth, service availability components (such as days and hours of service, passenger information and marketing, telephone access, and, of course, increased provision of general trips) might benefit from the new TD dollars.

• Recommendations

• TECH should closely monitor the relationship between trips provided and trips denied as part of an availability service measure.

• If staff would find it helpful for service planning and demand analysis, TECH should better distinguish summer programs from 12-month programs in reports.

• A simple system for tracking the total number of new registrants added each fiscal year should be implemented.
• TECH should seek to achieve a high profile in its level of communication to the public.

• Aspects of service availability such as trip volume, hours and days of service, and telephone access should be considered as areas that could benefit from additional funding.
Funding

The amount of service available is a function of cost-effectiveness and of the funding available. Each CTC is charged with significant responsibility for coordinating TD trips and in administering funds properly. The coordinator must use public funding wisely and be accountable for its actions. The CTC needs to ensure the efficient use of available funding to support the program and ensure program accountability.

TECH's funding is outlined briefly below.

- Between FY 1993 and FY 1994, funding increased from several sources: farebox, transit fuel tax refund, Tri-County Senior Services, other private contributors and sponsors, the TD Trust Fund, and Medicaid.

- Total revenues decreased, however, because TECH did not receive as much funding in FY 1994 in DOT equipment grants, donated equipment, or interest income.

- Measured as a percentage of operating expense, farebox revenue increased slightly to approximately five percent.

- Local revenue, as a percentage of operating expense, remains approximately 23 percent, approximating the percentage of operating expenses covered by local revenue. Local revenue as a percentage of total revenue also remains about 23 percent.

- Capital grants aside, funding for transportation increased from FY 1993 to FY 1994, but significantly less than the proportionate increase in ridership. This was possible primarily due to increased efficiencies (discussed under Cost-Effectiveness and Efficiency), however, total expenses were slightly higher than planned, though this was anticipated.

* Expenses exceeded revenues by $17,042.87. Expenses included approximately $35,000 in depreciating that will be reduced to balance the budget. Plans at the beginning of the fiscal year anticipated this possibility.
• TECH has been successful in identifying and procuring new sources of funding, primarily through new purchase of service (POS) contracts.

• TECH's rate structure is unusually equitable. Sponsors are charged a per mile rate, and the fee for each mile is split among the passengers sharing that vehicle at that time. This billing process is complex; however, multi-loading and increased efficiency result in significant cost savings for sponsors where multiloding occurs.

• Funding from the TD Trust Fund will increase from approximately $160,000 in FY 1994 to $351,108 in FY 1995, due in large part to the addition of $150,621 from a $1 increase on license tag fees. 18

• With the additional TD Trust Fund monies, it is necessary for TECH to develop new strategies to address the allocation of these funds in Collier County, in conjunction with the LCB and MPO. Alternatives for enhancement of the system and the expenditure of these new monies will be addressed in Task 3 of this study. The Commission has specified that these funds are to be used for additional service and related equipment, but not for planning. Funding is further discussed in the following section of this document.

Recommendation

• TECH should continue to explore funding opportunities and potential new POS contracts.

• TECH should develop new strategies that address the allocation additional funding in Collier County, in conjunction with the LCB and MPO, along with the alternatives for enhancement of the system to be addressed by CUTR.
Accountability

The amount of data a CTC must generate and maintain is extensive. Accordingly, recordkeeping and data management are fundamental to an organized and well-coordinated TD service. TECH’s performance with regard to these measures of accountability is discussed below.

- Overall, TECH performs exceptionally well in terms of reporting service and grant information in a timely manner.

- TECH’s level of responsiveness toward implementing previous reporting recommendations has been high.

- TECH’s recordkeeping is also very comprehensive. Detailed and accurate service statistics are maintained on a regular basis; however, the information is somewhat underutilized. Such information could prove helpful with tracking system performance as it relates to ongoing measures and TECH’s yearly goals.

Recommendation

- TECH should explore options to maximize the usefulness of its extensive MIS database as an internal monitoring tool. Aspects that could be further addressed include on-time performance, registrant tracking, capacity/demand information, and other standard performance measures described under Quality and Training.
Peer Comparisons

CTCs are required to submit various operating statistics to the Commission for the Transportation Disadvantaged each year via an Annual Operating Report. Because the information is collected according to uniform reporting procedures, it may be used to compare certain performance measures among CTCs. These comparisons do not take into consideration any local factors, but are useful at providing a rough idea of how well the CTC is performing when the CTC is compared to the median (mid-point) for its peer groups. The peer comparison cannot substitute for a detailed evaluation of the local system itself, however.

This process compares CTCs by peer group in several key measures. *

- Vehicle miles and revenue miles per TD Category I population, as measures of availability; **
- Passenger trips per vehicle and revenue miles, as measures of efficiency;
- Operating expense per vehicle mile, per revenue mile, and per passenger trip as measures of cost-effectiveness;
- Accidents per 100,000 vehicle miles, as a measure of safety;
- Vehicle miles between roadcalls, as a measure of quality and preventive maintenance; and
- Local revenue as a percentage of operating expenses, as a measure of effective use of TD funding.

CUTR conducted peer comparisons based on the most recently completed fiscal year for which uniform data are available for all CTCs: FY 1993. TECH was compared to median statistics for other urban private-non profits, other urban sole providers, and systems with similar ridership. Because TECH has such a large rural service area, the

* Note that no statewide standards exist for these measures. It also should be noted that coordination and competition are not comparable absence the compilation of median performance measures. The evaluation model peer comparison does not take into account local factors (such as population densities, service configuration) except as the peer groups are defined.

** TD Category I population refers to the total population that may require TD services, as defined by F.S. 427 or because they are eligible for a program that sponsors TD transportation.
system was also compared to rural peers (shown in italics below the urban figures). Both comparisons are shown in the following table:

<table>
<thead>
<tr>
<th>Performance Measures</th>
<th>FY 1993</th>
<th>TECH</th>
<th>Median Performance Measures by Peer Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Urban</td>
<td>Urban (Rural) Private Non-Profit Private Sole Provider</td>
</tr>
<tr>
<td>1. Vehicle Miles per TD Capita</td>
<td>9.08</td>
<td>12.50</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.34</td>
<td>58.89</td>
</tr>
<tr>
<td>2. Revenue Miles per TD Capita</td>
<td>5.88</td>
<td>11.26</td>
<td>4.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.15</td>
<td>47.23</td>
</tr>
<tr>
<td>3. Passenger Trips per Vehicle Mile-Total</td>
<td>0.12</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>4. Passenger Trips per Revenue Mile-Total</td>
<td>0.18</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>5. Operating Expense per Vehicle Mile</td>
<td>$1.13</td>
<td>$1.21</td>
<td>$1.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.02</td>
<td>$0.99</td>
</tr>
<tr>
<td>6. Operating Expense per Revenue Mile</td>
<td>$1.75</td>
<td>$1.37</td>
<td>$1.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.29</td>
<td>$1.23</td>
</tr>
<tr>
<td>7. Operating Expense per Passenger Trip-Total</td>
<td>$9.52</td>
<td>$8.41</td>
<td>$9.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$9.06</td>
<td>$9.06</td>
</tr>
<tr>
<td>8. Accidents per 100,000 Vehicle Miles</td>
<td>0.15</td>
<td>1.21</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td>1.35</td>
</tr>
<tr>
<td>9. Vehicle Miles Between Roadcalls</td>
<td>24,631</td>
<td>45,477</td>
<td>112,245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19,566</td>
<td>67,079</td>
</tr>
<tr>
<td>10. Local Revenue Percent of Operating Expense</td>
<td>23.6%</td>
<td>23.6%</td>
<td>35.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.4%</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

Key findings are outlined below.

- TECH generally surpassed its urban peers in several measures: passenger trips per revenue mile, operating expense per vehicle mile, accidents per 100,000 miles, and local revenue as a percentage of operating expense.

* A large rural service area is common among the "urban" CTCs. Urban CTC have a population center of 50,000 or more within their service area.
• TECH generally did not do as well as its urban peers in several other measures: miles per TD capita, passenger trips per vehicle mile, cost per revenue mile, cost per trip, and roadcalls.

• In general, a comparison to rural peers is similar, although TECH compares less favorably in miles per TD capita and cost per mile, and more favorably in trips per mile.

• These FY 1993 statistics suggest that TECH should try to reduce its per trip cost by reducing deadhead, providing more trips, and increasing multiloading. TECH reduced its cost per trip by 42 percent from $11.38 in FY 1993 to $6.61 in FY 1994.

• The peer comparison would also suggest that maintenance should be improved. TECH significantly increased its miles between roadcalls during FY 1994, as discussed under Quality and Training.

Recommendations

• The peer comparison should be conducted again as soon as statewide statistics are available for FY 1994, using the Evaluation Workbook and FY 1994 SOR.*

* No current statewide peer comparisons can be made until the SOR is compiled by the CTD staff.
Conclusions

TECH has experienced tremendous growth in service delivery since it became the CTC in December 1990. Improvements are continuously implemented and TECH exceeds many standards for transportation systems, although a few areas could be improved. A general summary of the findings and recommendations is provided below.

- With increased funding, TECH has been able to provide many additional trips. The growth in ridership has allowed TECH to attain much greater efficiencies. TECH’s equitable fare structure results in better rates for many sponsored trips because multi-loading splits the transportation cost among passenger (and his/her sponsor of each). As additional funding becomes available, and service continues to grow, efficiencies should continue to improve.

- As growth continues TECH is likely to reach a point when it becomes financially attractive to contract out some service rather than to expand. At that time it may be appropriate to identify a specific area of service to parcel out. Currently, little incentive or need exists for TECH or operators to enter into transportation operator contracts.

- TECH continues to engage in new purchase of service contracts and should continue to look for opportunities to do so. Also, TECH can improve coordination by seeking coordination contracts.

- TECH excels in areas related to safety, training, and quality improvement.

- Separate, less stringent SSPP standards that still meet Chapter 14-90 requirements could be established, if necessary, to accommodate coordination contracts and transportation operator contracts. These standards would need to be carefully evaluated, preferably on a case-by-case basis, in order to ensure that past safety and risk management practices are not compromised.

- One area that has suffered as a result of increased ridership and efficiency is on-time performance. This area in particular should be targeted for improvement.
through better scheduling, monitoring, and communication. This aspect will be evaluated more thoroughly in Task 3 of this study.

These conclusions, and the findings and recommendations described throughout this document, are based solely on the evaluation conducted by CUTR as Task 1 of the TD System Evaluation and Enhancement study. Several of these areas and additional aspects of TECH's role in the community and TECH’s operations will be examined in Task 2 and Task 3 of this study. The overall findings will appear in a final report at the end of the study.
Endnotes

1. The populations of Collier County and Naples, Florida, are based on the U.S. Census and Florida Bureau of Economic and Business Research (BEBR) estimates, as shown below.

<table>
<thead>
<tr>
<th>Year</th>
<th>County</th>
<th>Naples</th>
<th>Urban Area</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>152,099</td>
<td>19,505</td>
<td>94,344</td>
<td>Census</td>
</tr>
<tr>
<td>1993</td>
<td>174,664</td>
<td>19,881</td>
<td>N/A</td>
<td>BEBR</td>
</tr>
<tr>
<td>1994</td>
<td>192,282</td>
<td>20,201</td>
<td>N/A</td>
<td>BEBR</td>
</tr>
</tbody>
</table>

The area of Collier County and Naples is shown below, expressed in square miles.

<table>
<thead>
<tr>
<th>Area</th>
<th>County</th>
<th>Naples</th>
<th>Urban Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total:</td>
<td>2305.1</td>
<td>13.3</td>
<td>60.0</td>
</tr>
<tr>
<td>Land:</td>
<td>2025.5</td>
<td>11.0</td>
<td>56.9</td>
</tr>
<tr>
<td>Water:</td>
<td>279.6</td>
<td>2.4</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Collier County's area is from the *1993 Florida Statistical Abstract*. The area for the City of Naples and the Naples Urbanized Area, is found in: U.S. Census of Population and Housing, Summary Tape File 1C, United States Summary.

Population densities for 1990, based on these figures, were:

<table>
<thead>
<tr>
<th>Place</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>County:</td>
<td>75 per square mile</td>
</tr>
<tr>
<td>City of Naples:</td>
<td>1,773 per square mile</td>
</tr>
<tr>
<td>Naples Urbanized Area:</td>
<td>1,658 per square mile</td>
</tr>
<tr>
<td>County (non-Naples):</td>
<td>66 per square mile</td>
</tr>
<tr>
<td>County (non-Naples Urbanized Area):</td>
<td>29 per square mile</td>
</tr>
</tbody>
</table>

2. Passenger trips provided in FY 1993 are from the *1993 Statewide Operations Report* prepared by CUTR, based on annual operations reports submitted by CTCs to the Commission for the Transportation Disadvantaged.

Passenger trips provided from July 1993 to March 1994 total 110,598, as shown in TECH reports. Calculations for this report are based on an FY 1994 estimate of 138,000 projected by CUTR with input from TECH. The preliminary actual FY 1994 passenger trips count is 137,115, a difference of less than 1 percent.

An urban/rural breakdown of trips will be considered in Task 3.
3. Organizations providing transportation to the general public or TD population include 46 for-hire operators (Collier County Code Compliance office, 6/1/94), and the 14 social service organizations (private and public) that provide transportation listed in the Coordinated Transportation Development Plan for Collier County (6/17/93). The June 1993-1994 Naples/Collier County telephone directory was consulted, but no additional operators were listed. The total does not include churches, independent volunteers, transportation strictly for migrant workers, or school bus providers, but does include the CTC, for-hire operators, and social service organizations. There is no public transit system.

5. The 20 purchase of service (POS) contracts TECH had in 1994 include: Boy Scouts of America; Buena Vida Retirement Home; Collier County Public Schools; Collier County Parks & Recreation; Collier County Services for Seniors; Community Health Care; Division of Blind Services; FIESCO; Girls, Inc.; Heritage Health Care; Job Club; JTPA; Kelly's Kids; Agency for Health Care Administration (Medicaid); Networking; Parents As Teachers; R & P Management; Strive; Special Olympics; and Tri-County Senior Services. The CTD trip and equipment grant and the FDOT Section 18 grant, and the services they funded, are counted in addition to the 20 POS contracts. Service also was provided under letters of authorization or purchase orders to: Children's Medical Services; Galagher Basset Services Insurance; Lee County Public Guardianship Program; Lee Memorial Hospital; Marriott Casualty Claims Insurance; and North Collier Hospital.

6. Based on input from staff to the LCB, and via observation and comments by LCB members.

7. It should be noted that due to the change in TECH’s fiscal year in 1992 from the federal fiscal calendar (October-September) to the state fiscal calendar (July-June), the availability of consistent accounting information was limited to reporting periods following this change. The data for Projected FY 1994 includes the first three fiscal quarters (July through March — YTD 1994) and projections for the fourth quarter. The fourth quarter cost projections are estimated end of year expenses. The passenger trips for the fourth quarter were projected at a five percent increase which is based on the current year trend. This estimate is slightly more conservative than the actual increases observed during the second and third quarters, which increased eight percent and seven percent, respectively. In any event, the per-unit performance measures are comparable. Preliminary totals for FY 1994 were used when available.

8. Based on preliminary FY 1994 totals, provided by TECH on CUTR July 12, 1994. "Unassigned" trips and mileage includes the difference between manual subtotals and the actual compiled preliminary totals prepared by TECH.

9. Based on TECH reports "Ytd Budget Summary - Actual Vs Projected." The FY 1993 report is supplemented with first quarter estimates from a previous accounting system. The FY 1994 report was made available on 7/12/94 and should be
considered preliminary. Initial analyses were based on Projected FY 1994, using the actual "Ytd Budget Summary" for 7/1/93 to 3/31/94 supplemented with fourth quarter estimates by TECH’s accountant.

This accounting system is not the same as the accounting system required for TD reporting, so statistics vary slightly from SOR figures.

Operating Expense excludes include "DOT Equipment" totaling $125,169.60 in FY 1993, but does include depreciation in both fiscal years.

10. Administrative costs are defined as identified on TECH "Ytd Budget Summaries," with the addition of the TD Manager’s salary.

12. FY 1994 statistics based on preliminary year-end totals: 30 roadcalls including the 11 related to new vehicle defects, 19 roadcalls excluding the 11 related to defects, 798,374 vehicle miles.

The vehicle fleet is shown in the table that follows.
<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Seat Cap.</th>
<th>Model Year</th>
<th>Current Mileage</th>
<th>Special Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van 040</td>
<td>10</td>
<td>91 Dodge</td>
<td>94,211</td>
<td>Radio/AC/Lift</td>
</tr>
<tr>
<td>Van 041</td>
<td>10</td>
<td>92 Dodge</td>
<td>60,810</td>
<td>Radio/AC/Lift</td>
</tr>
<tr>
<td>Van 102</td>
<td>14</td>
<td>84 Ford</td>
<td>106,661</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Van 103</td>
<td>14</td>
<td>86 GMC</td>
<td>84,184</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Bus 104</td>
<td>44</td>
<td>83 Int'l</td>
<td>137,684</td>
<td>Radio</td>
</tr>
<tr>
<td>Bus 105</td>
<td>14</td>
<td>87 Bus</td>
<td>92,500</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Bus 106</td>
<td>14</td>
<td>88 Bus</td>
<td>102,508</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>SW 118</td>
<td>9</td>
<td>90 Chev</td>
<td>140,775</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>SW 119</td>
<td>9</td>
<td>90 Chev</td>
<td>124,621</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>SW 120</td>
<td>9</td>
<td>90 Chev</td>
<td>124,250</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>SW 121</td>
<td>9</td>
<td>90 Chev</td>
<td>117,486</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>SW 124</td>
<td>9</td>
<td>90 Chev</td>
<td>136,307</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Van 145</td>
<td>15</td>
<td>91 Ford</td>
<td>93,799</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Van 146</td>
<td>15</td>
<td>91 Ford</td>
<td>110,250</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Van 147</td>
<td>15</td>
<td>91 Ford</td>
<td>100,833</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Van 148</td>
<td>15</td>
<td>91 Ford</td>
<td>120,348</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Bus 153</td>
<td>24</td>
<td>88 Chev</td>
<td>167,385</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Bus 154</td>
<td>24</td>
<td>88 Chev</td>
<td>138,634</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Van 157</td>
<td>15</td>
<td>88 Dodge</td>
<td>133,467</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Van 158</td>
<td>15</td>
<td>88 Dodge</td>
<td>111,164</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Bus 162</td>
<td>9</td>
<td>93 Chev</td>
<td>35,488</td>
<td>Radio/AC/Lift</td>
</tr>
<tr>
<td>Bus 163</td>
<td>9</td>
<td>93 Chev</td>
<td>27,641</td>
<td>Radio/AC/Lift</td>
</tr>
<tr>
<td>Bus 164</td>
<td>9</td>
<td>93 Chev</td>
<td>42,610</td>
<td>Radio/AC/Lift</td>
</tr>
<tr>
<td>Bus 165</td>
<td>9</td>
<td>93 Chev</td>
<td>35,186</td>
<td>Radio/AC/Lift</td>
</tr>
<tr>
<td>Van 848</td>
<td>16</td>
<td>87 Ford</td>
<td>174,249</td>
<td>Radio/AC</td>
</tr>
<tr>
<td>Van 849</td>
<td>12</td>
<td>87 Ford</td>
<td>136,048</td>
<td>Radio/AC/Lift</td>
</tr>
<tr>
<td>Bus 107</td>
<td>14</td>
<td>86 Thomas</td>
<td>151,000</td>
<td>Radio/AC/Lift</td>
</tr>
</tbody>
</table>

Source: Coordinated Community Transportation Disadvantaged Service Plan, Collier County 1994-1995.
From the *Florida Five-Year TD Plan*.

Based on actual FY 1993, and preliminary total passenger trips for FY 1994 as reported by TECH (7/12/94). Calculations are shown in the table below.

<table>
<thead>
<tr>
<th>Measure</th>
<th>FY 1993</th>
<th>FY 1994 (Prelm.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. TD Category I Population (CUTR est. method w/local stats.)</td>
<td>68,185</td>
<td>70,815</td>
</tr>
<tr>
<td>b. TD Category II Population (CUTR est. method w/local stats.)</td>
<td>14,089</td>
<td>14,636</td>
</tr>
<tr>
<td>c. Estimated demand for program trips (c=f)</td>
<td>50,534</td>
<td>49,332</td>
</tr>
<tr>
<td>d. Estimated demand for general trips (b14.4)</td>
<td>202,881</td>
<td>210,758</td>
</tr>
<tr>
<td>e. Total trip demand (c+d)</td>
<td>253,415</td>
<td>260,090</td>
</tr>
<tr>
<td>f. Program trips provided (x)</td>
<td>50,534</td>
<td>49,462</td>
</tr>
<tr>
<td>g. General trips provided (y)</td>
<td>28,710</td>
<td>87,652</td>
</tr>
<tr>
<td>h. Total trips provided (f+g)</td>
<td>79,244</td>
<td>137,115</td>
</tr>
<tr>
<td>i. General trip demand met (g/d)</td>
<td>31%</td>
<td>53%</td>
</tr>
<tr>
<td>j. Trip denials (as reported)</td>
<td>538</td>
<td>980</td>
</tr>
<tr>
<td>k. Percent of requests met (h/(h+j)</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>

w. Estimated by CUTR using the methods outlined in *Methodology Guidelines for Forecasting TD Transportation Demand at the County Level* with local figures. Collier County has a lower proportion of disabled residents than the statewide average, resulting in TD population and demand estimates lower than those listed in the *Statewide Operations Report*.

x. Program trips include: Girls Inc, Medicaid, Collier County parks and Recreation, Parents as Teachers, Strive Education / Job Club, Tri-County Senior Services, and one-half of all Other/Unassigned trips (FY 1994).

y. General trips include: Immokalee Bus Route, Strive to work, TD, and one-half of Other/Unassigned trips (FY 1994).

15. Denials are tracked via computer. Each denial is coded as to trip purpose and classification of the potential user. The following bases for service denials are included:

- Called after cutoff time for scheduling trips;
- Person resides out of service area;
- Person refuses to reschedule at a more efficient time;
- Person does not meet eligibility criteria;
- Trip out of service area;
- Available vehicle already filled;
- No vehicle available at time and place requested;
- No funding available for trip;
- Person is a chronic "no show;"
- Person requires emergency medical attention
- Vehicle is out of service;
- Safety hazard;
- Same day denial for non-medical trip; or
- Stretcher service required.

Information provided by TECH.

16. Based on information provided by TECH staff.

17. Based on:

<table>
<thead>
<tr>
<th></th>
<th>FY 1993</th>
<th>FY 1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Revenue</td>
<td>$910,923</td>
<td>$889,348</td>
</tr>
<tr>
<td>Total Expenses</td>
<td>$901,614</td>
<td>$906,391</td>
</tr>
<tr>
<td>Local Revenue</td>
<td>$200,088</td>
<td>$214,937</td>
</tr>
<tr>
<td>Local Rev / Tot Rev</td>
<td>22.0%</td>
<td>24.2%</td>
</tr>
<tr>
<td>Local Rev / Tot Exp</td>
<td>22.2%</td>
<td>23.7%</td>
</tr>
<tr>
<td>SOR Op Revenue</td>
<td>$752,956</td>
<td>n/a</td>
</tr>
<tr>
<td>SOR Op Expenses</td>
<td>$754,320</td>
<td>n/a</td>
</tr>
<tr>
<td>SOR Rev / Tot Rev</td>
<td>23.6%</td>
<td>n/a</td>
</tr>
<tr>
<td>SOR Rev / Tot Exp</td>
<td>23.6%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

TECH local revenue includes Farebox, "No Show" Charge, Interest, Donations, Donated Equipment, United Way, Subsidies (TECH), County Cash (approximately 22% of Transportation G. line item), 50% of Transit Fuel Tax refund, and 66% of "Other Revenues/P.

FY 1993 figures are based on the more detailed AOR/SOR revenue data.