The Systematics of Lithium Abundances in Young Volcanic Rocks

Document Type


Publication Date


Digital Object Identifier (DOI)



Lithium is a moderately incompatible trace element in magmatic systems. High precision analyses for lithium conducted on well characterized suites of MORB and ocean island basalts suggest a bulk distribution coefficient of 0.25−0.35 and behavior which is similar to Yb during low pressure fractionation and V during melting, as long as garnet is not an important residual phase. Data for peridotites and basalts suggest a mantle lithium content of about 1.9 ppm and show that significant concentrations of lithium reside in olivine and orthopyroxene, resulting in unusual inter-mineral partitioning of Li and complex relationships between lithium and other incompatible trace elements.

The lithium abundances of arc basalts are similar to those of MORB, but their Li/Yb ratios are considerably higher. The high Li/Yb suggests the addition of a Li-rich component to arc sources; relatively low Yb abundances are consistent with the derivation of some arc magmas by larger extents of melting or from a more depleted source than MORB. Although Li is enriched at arcs, K is enriched more, leading to elevated K/Li ratios in arc volcanics. The high K/Li and relatively low La/Yb of primitive arc basalts requires either incorporation of altered ocean crust into arc magma sources, or selective removal of K and Li from subducted sediments. Bulk incorporation of sediments alone does not explain the Li systematics.

Data from primitive MORB indicate a relatively low (3–4 ppm) Li content for new oceanic crust. Thus, the Li flux from the ocean crust is probably <1 × 1011 g/yr, and the oceanic crust may not be an important net source in the oceanic budget of lithium.

Was this content written or created while at USF?


Citation / Publisher Attribution

Geochimica et Cosmochimica Acta, v. 51, issue 6, p. 1727-1741