Observation of Glacial Isostatic Adjustment in “Stable” North America with GPS

Document Type


Publication Date


Digital Object Identifier (DOI)



Motions of three hundred and sixty Global Positioning System (GPS) sites in Canada and the United States yield a detailed image of the vertical and horizontal velocity fields within the nominally stable interior of the North American plate. By far the strongest signal is the effect of glacial isostatic adjustment (GIA) due to ice mass unloading during deglaciation. Vertical velocities show present-day uplift (∼10 mm/yr) near Hudson Bay, the site of thickest ice at the last glacial maximum. The uplift rates generally decrease with distance from Hudson Bay and change to subsidence (1–2 mm/yr) south of the Great Lakes. The “hinge line” separating uplift from subsidence is consistent with data from water level gauges along the Great Lakes, showing uplift along the northern shores and subsidence along the southern ones. Horizontal motions show outward motion from Hudson Bay with complex local variations especially in the far field. Although the vertical motions are generally consistent with the predictions of GIA models, the horizontal data illustrate the need and opportunity to improve the models via more accurate descriptions of the ice load and laterally variable mantle viscosity.

Was this content written or created while at USF?


Citation / Publisher Attribution

Geophysical Research Letters, v. 34, issue 2, art. L02306