Development and Analysis of a 12-year Daily 1-km Forest Fire Dataset Across North America from NOAA/AVHRR Data

Document Type


Publication Date



forest fires, burned area mapping, NOAA/AVHRR data, North America

Digital Object Identifier (DOI)



Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire emissions. Using the daily Advanced Very High Resolution Radiometer (AVHRR) data archived from 1989 to 2000, an extensive and consistent fire product was developed across the entire NA forest regions on a daily basis at 1-km resolution. The product was generated following data calibration, geo-referencing, and the application of an active fire detection algorithm and a burned area mapping algorithm. The spatial–temporal variation of forest fire in NA is analyzed in terms of (1) annual and monthly patterns of fire occurrences in different eco-domains, (2) the influence of topographic factors (elevation zones, aspect classes, and slope classes), and (3) major forest types and eco-regions in NA. It was found that 1) among the 12 years analyzed, 1989 and 1995 were the most severe fire years in NA; 2) the majority of burning occurred during June–July and in low elevation zones (< 500 m) with gentle slopes (< 10°), except in the dry eco-domain where more fires occurred in higher elevation zones (> 2000 m); 3) most fires occurred in the polar eco-domain, sub-arctic eco-division, and in the taiga ( boreal forests), forest-tundras and open woodlands eco-provinces in the boreal forests of Canada. The tendency for multiple burns to occur increases with elevation and slope until about 2500 m elevation and 24° slope, and decreases therefore. In comparison with ground observations, the omission and commission errors are on the order of 20%.

Was this content written or created while at USF?


Citation / Publisher Attribution

Remote Sensing of Environment, v. 108, issue 2, p. 198-208