Graduation Year

2005

Document Type

Thesis

Degree

M.S.E.E.

Degree Granting Department

Electrical Engineering

Major Professor

Dr. Shekhar Bhansali.

Keywords

Skin, Drie, Porous silicon, Penetration force, Fracture force

Abstract

Hollow biocompatible microneedle arrays were designed and fabricated using two different bulk micromachining techniques-Deep Reactive Ion Etching and Coherent Porous Silicon technology to investigate their reliability for transdermal applications. An in-house experimental setup was developed for microneedle fracture and split thickness penetration force measurements. Out of plane needle array configurations (100and#956;m needle length) with intra array geometric variations including needle shape, diameter, intra-array pitch and density (1a 625) were characterized on cadaver skin to predict skin barrier penetration without fracture. Use of microneedle array as transdermal patch necessitates reliable penetration and not just pushing against stratum corneum like a bed of nails. Critical in plane fracture tests were conducted on single microneedle columns with different geometry to validate the failure mechanism with force quantification relations.

Share

COinS