Graduation Year

2017

Document Type

Thesis

Degree

M.S.E.E.

Degree Name

MS in Electrical Engineering (M.S.E.E.)

Degree Granting Department

Electrical Engineering

Major Professor

Lingling Fan, Ph.D.

Committee Member

Selcuk Kose, Ph.D.

Committee Member

Zhixin Miao, Ph.D.

Keywords

Chance Constraints, MILP, MPEC, Pool Strategy, Power Market

Abstract

The thesis focuses on a mixed integer linear programming (MILP) formulation for a bi-level mathematical program with equilibrium constraints (MPEC) considering chance constraints. The particular MPEC problem relates to a power producer’s bidding strategy: maximize its total benefit through determining bidding price and bidding power output while considering an electricity pool’s operation and guessing the rival producer’s bidding price. The entire decision-making process can be described by a bi-level optimization problem. The contribution of our thesis is the MILP formulation of this problem considering the use of chance constrained mathematical program for handling the uncertainties. First, the lower-level poor operation problem is replaced by Karush-Kuhn-Tucker (KKT) optimality condition, which is further converted to an MILP formulation except a bilinear item in the objective function. Secondly, duality theory is implemented to replace the bilinear item by linear items. Finally, two types of chance constraints are examined and modeled in MILP formulation. With the MILP formulation, the entire MPEC problem considering randomness in price guessing can be solved using off-shelf MIP solvers, e.g., Gurobi. A few examples and a case study are given to illustrate the formulation and show the case study results.

Share

COinS