Graduation Year


Document Type




Degree Name

Doctor of Philosophy (Ph.D.)

Degree Granting Department


Major Professor

Shengqian Ma, Ph.D.

Committee Member

Jianfeng Cai, Ph.D.

Committee Member

John N. Kuhn, Ph.D.

Committee Member

Julie P. Harmon, Ph.D.


Microporous Materials, Gas Separation, Heterogeneous Catalysis, CO2 Utilization


The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, have prompted the exploration of alternative approaches for CCS. Extensive efforts have been dedicated to the development of functional porous materials, such as activated carbons, zeolites, porous organic polymers, and metal-organic frameworks (MOFs) to capture CO2. However, these adsorbents are limited by either poor selectivity for CO2 separation from gas mixtures or low CO2 adsorption capacity. Therefore, it is still highly demanding to design next-generation adsorbent materials fulfilling the requirements of high CO2 selectivity and enough CO2 capacity, as well as high water/moisture stability under practical conditions.

Metal-organic frameworks (MOFs) have been positioned at the forefront of this area as a promising type of candidate amongst various porous materials. This is triggered by the modularity and functionality of pore size, pore walls and inner surface of MOFs by use of crystal engineering approaches. In this work, several effective strategies, such as incorporating 1,2,3-triazole groups as moderate Lewis base centers into MOFs and employing flexible azamacrocycle-based ligands to build MOFs, demonstrate to be promising ways to enhance CO2 uptake capacity and CO2 separation ability of porous MOFs. It is revealed through in-depth studies on counter-intuitive experimental observations that the local electric field favours more than the richness of exposed nitrogen atoms for the interactions between MOFs and CO2 molecules, which provides a new perspective for future design of new MOFs and other types of porous materials for CO2 capture. Meanwhile, to address the water/moisture stability issue of MOFs, remote stabilization of copper paddlewheel clusters is achieved by strengthening the bonding between organic ligands and triangular inorganic copper trimers, which in turn enhances the stability of the whole MOF network and provides a better understanding of the mechanism promoting prospective suitable MOFs with enhanced water stability.

In contrast with CO2 capture by sorbent materials, the chemical transformation of the captured CO2 into value-added products represents an alternative which is attractive and sustainable, and has been of escalating interest. The nanospace within MOFs not only provides the inner porosity for CO2 capture, but also engenders accessible room for substrate molecules for catalytic purpose. It is demonstrated that high catalytic efficiency for chemical fixation of CO2 into cyclic carbonates under ambient conditions is achieved on MOF-based nanoreactors featuring a high-density of well-oriented Lewis active sites. Furthermore, described for the first time is that CO2 can be successfully inserted into aryl C-H bonds of a MOF to generate carboxylate groups. This proof-of-concept study contributes a different perspective to the current landscape of CO2 capture and transformation. In closing, the overarching goal of this work is not only to seek efficient MOF adsorbents for CO2 capture, but also to present a new yet attractive scenario of CO2 utilization on MOF platforms.