Graduation Year

2014

Document Type

Thesis

Degree

Ph.D

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Physics

Degree Granting Department

Physics

Major Professor

Xiaomei Jiang, Ph.D.

Co-Major Professor

Randy Larsen, Ph.D.

Committee Member

Randy Larsen, Ph.D.

Committee Member

Garrett Matthews, Ph.D.

Committee Member

George Nolas, Ph.D.

Keywords

Bulk-heterojunctions, Excitonic processes, Morphology, Charge Transport

Abstract

In this Ph.D. work, we investigate the optoelectronic properties of low-bandgap semiconducting polymers and project the potential for employing these materials in electronic and photonics devices, with a particular emphasis on use in organic solar cells. The field of organic solar cells is well developed and many of the fundamental aspects of device operation and material requirements have been established. However, there is still more work to be done in order for these devices to ultimately reach their full potential and achieve commercialization. Of immediate concern is the low power conversion efficiency demonstrated in these devices so far. In order to improve upon this efficiency, several routes are being explored. Because the optical bandgaps of semiconducting polymers are larger than in inorganic semiconductors, one of the most promising routes currently under exploration is the development of low-bandgap materials. Using polymers with lower band gaps will allow more of the solar irradiance spectrum to be absorbed and converted into electricity and thus possibly boost the overall efficiency.

The bandgap of these semiconducting polymers is determined by the chemical structure, and therefore can be tailored through synthesis if the relevant structure-property relationships are well-understood. The materials studied in this work, a new series of Poly(thienylenevinylene) (PTV) derivatives, posses lower band gaps than conventional polymers through a design that incorporates aromatic-quinoid structural disturbances. This type of chemical structure delocalizes the electronic structure along the polymer backbone and reduces the energy of the lowest excited-state leading to a smaller band-gap. We investigate these materials through a variety of techniques including linear spectroscopy such as absorption and photoluminescence, pump-probe techniques like cw-photoinduced absorption and transient photo-induced absorption, and the non-linear electroasborption technique in order to interrogate the consequences of the delocalized electronic structure and its response to optical stimuli. We additionally consider the effects of environmental factors such as temperature, solvents and chemical doping agents. During the course of these investigations, we consider both of the two primary categorical descriptions of structure-property relationships for polymers within the molecular exciton model, namely the role of inter-molecular interactions on the electronic properties through the variation of supermolecular order and the fundamental determination of electronic structure due to specific intra-molecular interaction along the backbone of the polymer chain. We show that the dilution of aromaticity in semiconducting polymers, while being a viable means of reducing the optical band gap, results in a significant increase in the role of electron-electron interactions in determining the electronic properties. This is observed to be detrimental for device performance as the highly polarizable excited state common to polymers gives way to highly correlated state that extinguishes both the emissive properties and more importantly for solar cells, the charge-generating characteristics. This situation is shown to be predominant regardless of the nature of interchain interactions. We therefore show that the method of obtaining low-bandgap polymers here comes along with costly side-effects that inhibit their efficient application in solar cells.

Further, we directly probe the efficacy of these materials in the common bulk-heterojunction architecture with both spectroscopy and device characterization in order to determine the limiting and beneficial factors. We show that, while from the point of view of absorption of solar radiation these low-bandgap polymers are more suited for solar cells, the ability to convert the absorbed photons into electron-hole pairs and generate electricity is lacking, due to the internal conversion into the highly correlated state and thus, the absorbed photon energy is lost. For completeness, we fabricate devices and verify that both the charge-transport properties and alignment of charge extraction levels with those of the contacts can not be responsible for the dramatic decrease in efficiency found from these devices as compared to other higher band gap polymers. We thus conclusively determine that the lack of power converison efficiency is governed by the inefficiency of charge-generation resulting from the intrinsic defective molecular structures rendering a low-lying optically forbidden state below the lowest optical allowed state that consumes the majority of the photogenerated excitons.

It is emphasized that our means of investigation allow us to truly access the potential of these materials. In contrast, the direct application of these systems in devices and interpretation of the performance is exceedingly complex and may obscure their true potential. In other words, poor performance from a device may be extrinsic in nature and the optimization process may be very costly with respect to both time and materials. The methods used here however, allow us to determine the intrinsic potential. Not only is this beneficial in terms of preserving the resources that would be used on the trial-and-error method for devices, but it also allows us to learn more on a fundamental level about the structure-property relationships and their implications for device performance. The benefits of this increased understanding are two-fold. First, by learning about the fundamental response of a material, a new application may be realized. For example, the rapidly efficient internal conversion process that renders the materials in this study as poor candidates for solar cells may make them useful for photonics applications, as optical switches, for instance. Secondly, this type of investigation has implications for the whole organic electronics community instead of just being limited to the particular material system and the primary application attempted. In this case, we are essentially able to determine a threshold for aromaticty necessary in a structure that will preserve the stability of the ionic excited state that is useful for charge generation in solar cells.

Included in

Physics Commons

Share

COinS