Document Type




Degree Granting Department

Medical Sciences

Major Professor

Yu Chen


antibiotic resistance, beta-lactam antibiotics, beta-lactamase, enzyme mechanism, non-covalent inhibitors, structure-aided design


The emergence of CTX-M class-A extended-spectrum β-lactamases, which confer resistance to second and third-generation cephalosporins, poses a serious health threat to the public. CTX-M β-lactamases use a catalytic serine to hydrolyze the β-lactam ring. Specifically, the hydrolysis reaction catalyzed by CTX-M β-lactamase proceeds through a pre-covalent complex, a high-energy tetrahedral acylation intermediate, a low-energy acyl-enzyme complex, a high-energy tetrahedral deacylation intermediate after attack via a catalytic water, and lastly, the hydrolyzed β-lactam ring product which is released from the enzyme complex. The crystallographic structure of CTX-M at sub-angstrom resolution has enabled us to study enzyme catalysis as well as perform computational molecular docking in our efforts to develop new inhibitors against CTX-M. The goal of this project was to determine the hydrogen bonding network and proton transfer process at different stages of the reaction pathway as well as develop novel inhibitors against CTX-M β-lactamases. The results I have obtained from the project have elucidated the catalytic mechanism of CTX-M β-lactamase in unprecedented detail and facilitated the development of novel inhibitors for antibiotic drug discovery.

The first aim of the project focused on developing high affinity inhibitors against class A β-lactamase using a structure-based drug discovery approach, which ultimately led to the identification of CTX-M9 inhibitors with nanomolar affinity. Compound design was based on the initial use of computational molecular docking results along with x-ray crystal structures with known inhibitors bound in the active site. In addition, chemical synthesis was used to build and extend the existing inhibitor scaffold to improve affinity to CTX-M9 and related serine β-lactamases. Through a fragment-based screening approach, we recently identified a novel non-covalent tetrazole-containing inhibitor of CTX-M. Structure-based design was used to improve the potency of the original tetrazole lead compound more than 200-fold with the use of small, targeted structural modifications. A series of compounds were used to probe specific binding hotspots present in CTX-M. The designed compounds represent the first nM-affinity non-covalent inhibitors of a class A β-lactamase. The complex structures of these potent compounds have been solved using high resolution x-ray crystallography at ~ 1.2-1.4 Å, which provides valuable insight about ligand binding and future inhibitor design against class A β-lactamases.

Specifically, the first aim of the project was to use ultra-high resolution x-ray crystallography to study β-lactamase catalysis. Through the use of ultra-high resolution x-ray crystallography with non-covalent and covalent inhibitors, I was able to structurally characterize the critical stages of the enzyme mechanism. Here we report a series of ultra-high resolution x-ray crystallographic structures that reveal the proton transfer process for the early stages of the class A β-lactamase catalytic mechanism. The structures obtained include an a 0.89 Å crystal structure of CTX-M β-lactamase in complex with a recently-developed 89 nM non-covalent inhibitor, and a 0.80 Å structure in complex with an acylation transition state boronic acid inhibitor. Nearly all the hydrogen atoms in the active site, including those on the ligand, polar protein side chains and catalytic water, can be identified in the unbiased difference electron density map. Most surprisingly, compared with a previously determined 0.88 Å apo structure determined under the same conditions, the hydrogen-bonding network has undergone a series of reshuffling upon the binding of the non-covalent ligand. Two key catalytic residues, Lys73 and Glu166, appear to have both changed from a charged state to being neutral. Interestingly, structural evidence suggests the presence of a low barrier hydrogen bond (LBHB) shared between Lys73 and Ser70. These unprecedented detailed snapshots offer direct evidence that ligand binding can alter the pKa's of polar protein side chains and their affinities for protons. Such effects can be a common mechanism utilized by enzymes to facilitate the proton transfer process of a reaction pathway. They also have important implications for computational modeling of protein-ligand interactions. Ultra-high resolution x-ray crystallography allowed us to determine the hydrogen atom positions for key active site residues involved in catalysis. As a result, the ability to characterize the hydrogen bonding network led to the determination of the specific proton transfer process that occurs during the reaction stages of the CTX-M β-lactamase mechanism. Overall, the results from this project demonstrate the effectiveness of using ultra high resolution x-ray crystallography as a useful tool to study enzyme catalysis as well as develop and discover novel inhibitors.