Graduation Year


Document Type




Degree Granting Department

Industrial and Management Systems Engineering

Major Professor

Kingsley A. Reeves


Exponential Random Graph Models (ERGMs), individual innovativeness, Informetrics, Poisson Regression Analysis, Structural Equation Modeling


This research seeks an answer to the following question: what is the relationship between the structure of researchers' communication network and the structure of their collaborative output networks (e.g. co-authored publications, joint grant proposals, and joint patent applications), and the impact of these structures on their citation performance and the volume of collaborative research outputs? Three complementary studies are performed to answer this main question as discussed below.

1. Study I: A frequently used output to measure scientific (or research) collaboration is co-authorship in scholarly publications. Less frequently used are joint grant proposals and patents. Many scholars believe that co-authorship as the sole measure of research collaboration is insufficient because collaboration between researchers might not result in co-authorship. Collaborations involve informal communication (i.e., conversational exchange) between researchers. Using self-reports from 100 tenured/tenure-track faculty in the College of Engineering at the University of South Florida, researchers' networks are constructed from their communication relations and collaborations in three areas: joint publications, joint grant proposals, and joint patents. The data collection: 1) provides a rich data set of both researchers' in-progress and completed collaborative outputs, 2) yields a rating from the researchers on the importance of a tie to them 3) obtains multiple types of ties between researchers allowing for the comparison of their multiple networks. Exponential Random Graph Model (ERGM) results show that the more communication researchers have the more likely they produce collaborative outputs. Furthermore, the impact of four demographic attributes: gender, race, department affiliation, and spatial proximity on collaborative output relations is tested. The results indicate that grant proposals are submitted with mixed gender teams in the college of engineering. Besides, the same race researchers are more likely to publish together. The demographics do not have an additional leverage on joint patents.

2. Study II: Previous research shows that researchers' social network metrics obtained from a collaborative output network (e.g., joint publications or co-authorship network) impact their performance determined by g-index. This study uses a richer dataset to show that a scholar's performance should be considered with respect to position in multiple networks. Previous research using only the network of researchers' joint publications shows that a researcher's distinct connections to other researchers (i.e., degree centrality), a researcher's number of repeated collaborative outputs (i.e., average tie strength), and a researchers' redundant connections to a group of researchers who are themselves well-connected (i.e., efficiency coefficient) has a positive impact on the researchers' performance, while a researcher's tendency to connect with other researchers who are themselves well-connected (i.e., eigenvector centrality) had a negative impact on the researchers' performance. The findings of this study are similar except that eigenvector centrality has a positive impact on the performance of scholars. Moreover, the results demonstrate that a researcher's tendency towards dense local neighborhoods (as measured by the local clustering coefficient) and the researchers' demographic attributes such as gender should also be considered when investigating the impact of the social network metrics on the performance of researchers.

3. Study III: This study investigates to what extent researchers' interactions in the early stage of their collaborative network activities impact the number of collaborative outputs produced (e.g., joint publications, joint grant proposals, and joint patents). Path models using the Partial Least Squares (PLS) method are run to test the extent to which researchers' individual innovativeness, as determined by the specific indicators obtained from their interactions in the early stage of their collaborative network activities, impacts the number of collaborative outputs they produced taking into account the tie strength of a researcher to other conversational partners (TS). Within a college of engineering, it is found that researchers' individual innovativeness positively impacts the volume of their collaborative outputs. It is observed that TS positively impacts researchers' individual innovativeness, whereas TS negatively impacts researchers' volume of collaborative outputs. Furthermore, TS negatively impacts the relationship between researchers' individual innovativeness and the volume of their collaborative outputs, which is consistent with `Strength of Weak Ties' Theory. The results of this study contribute to the literature regarding the transformation of tacit knowledge into explicit knowledge in a university context.