Graduation Year

2014

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Geography, Environment and Planning

Major Professor

Philip Van Beynen

Keywords

Climate policy, Florida, Greenhouse gas emissions

Abstract

The purpose of this dissertation is to assess the current state of climate policy and greenhouse gas (GHG) emission trends in the state Florida and its local governments. The research is guided by three research questions 1) What has been the policy response from state and local governments to the threat of climate change; 2) What were the GHG emission trends from 2000 to 2010 in Florida and its local governments and what were the drivers of change?; and, 3) what were the issues related to the data and methodologies to quantify GHG emissions at the local government level? Policymakers need accurate data and a framework by which to measure progress towards reduction targets and mitigation strategies aimed at reducing GHG emissions. To date, there has not been a comprehensive assessment in Florida despite the proliferation of reduction targets and action planning in state and local governments.

Research was conducted to systematically catalogue climate policy at the state and specific actions at the local government level. Actions taken at the local government level included participation in one or more of eight climate networks and completion of a GHG inventory and/or climate action plan. A comprehensive GHG inventory was completed for the state (2000 through 2010) and for all 477 local governments (2000 and 2010). GHG emissions were summarized for total GHG emissions, per capita GHG emissions, per land area GHG emissions, and by sector (i.e., energy, transportation, industrial processes, agriculture, waste, carbon sequestration, and miscellaneous other categories).

The ambitious 2007 policies of Governor Crist to curb state GHG emissions floundered once he left office and was replace by the new Governor Rick Scott. It was then left to local governments to respond to the threat of global warming with 117 of 477 local governments pledging to take action (as evidenced through participation in climate action networks). However, only a small minority actually tried to go beyond to complete a GHG inventory and develop a climate action plan. Of these, only two have conducted a follow-up GHG inventory with resultant increases of over 30 percent which falls far short of county-wide reduction targets of 20 percent. GHG emissions from the 39 local governments who undertook GHG inventories found increases in GHG emissions of 10 percent.

GHG emissions in the state have increased by 14 percent from 2000 to 2010. In both 2000 and 2010, transportation and electricity consumption were the largest contributors of GHG emissions in both the state and its local governments. Industrial and agricultural emissions were also contributors but these emissions not equally distributed throughout local governments in Florida due to the location of these industries across the state. The rates of change from 2000 to 2010 were not equal in all categories. GHG emission increases were observed in the majority of categories but at different rates; however, reductions were observed in industrial sources and livestock and other agricultural sources. The research identifies drivers of GHG emission change in the state to include population size, Florida gross domestic product (FGDP), land use change, and national energy policies (i.e., natural gas over coal and increased fuel efficiency standards).

When assessing methodologies for states and local governments, nine separate GHG methodologies were identified all of which used different approaches and categorical coverage. In addition, the procedures that are used may not be appropriate for the scale of a local jurisdiction due to problems associated with generalizing or averaging emissions data. Data availability at the state level is robust; however, readily-available data at the local government level for certain categories were deemed to be insufficient to avoid highly uncertain assumptions. Review of the completed GHG inventories indicates the use of different approaches makes comparisons between the published GHG emissions impossible. It is recommended that a standardized methodology and data collection framework be used for all local governments for more accurate comparisons and to assess the impacts of policy at a local government scale. While the local government GHG inventory required the use of some uncertain assumptions due to data limitations, such a framework was developed for this dissertation. The framework could be refined with more accurate data for future inventories and could also be adapted for other states.

Share

COinS