Graduation Year


Document Type




Degree Granting Department

Marine Science

Major Professor

Kendra L. Daly

Co-Major Professor

Ernst B. Peebles


δ13C, δ15N, Crustacean, Cuticle, Lithium, Spawning migration


The blue crab, Callinectes sapidus, supports a successful fishery in the Atlantic Ocean and throughout the Gulf of Mexico, with a total landing of 8,158,788 lb. and a total value of $10,562,128 for the state of Florida during 2012 (FWC 2012 Annual Landings Summary). An accurate and comprehensive understanding of the blue crab's life history and seasonal migration behavior is essential in defining effective management strategies for the fishery. Tag recapture studies and ultrasonic tracking methods for studying blue crab migrations are costly in terms of time and resources. In this study an alternative approach, microchemical natural tagging, was successfully used to determine a female's mating habitat. This approach assumes that the exoskeleton of the post-terminal molt female blue crab reflects the mating habitat's chemical signature and that the chemical signals are stable over time. To test these hypotheses, mature female blue crabs were collected from two Tampa Bay locations. Collected crabs were placed in tanks for 29 days, a subset was sacrificed at T = 0 and then twice per week, and the exoskeletons were analyzed via Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Elemental Analyzer Infrared Mass Spectrometry (EA-IRMS) to observe the stability of the exoskseletal chemical signature over time. Over the 29 day time series, no significant change in the concentrations of Li, Ca, and Ba, or the isotopic ratios of 13C/12C (δ13C) and 15N/14N (δ15N) were observed (ANOVA p-value > 0.05). A Canonical Analysis of Principal Coordinates (CAP)-based discriminate analysis with leave-one-out cross-validation collectively compared Li concentrations, δ13C, and δ15N among five Tampa Bay locations, producing a confusion matrix successfully classifying field collected crabs into: Alafia River 33%#37;, Little Manatee River 71%#37;, Palm River 67%#37;, Safety Harbor 30%#37;, and Skyway Fishing Pier 83%#37;, with an overall classification success of 66%#37;. These results suggest that the largest biomass component of the migratory pulse collected near the mouth of Tampa Bay was dominated by crabs originating from an area not widely harvested by commercial fishermen, as relatively few of the migrating females were matched to riverine locations that were intensively fished. Instead, most appeared to originate from open waters of Tampa Bay. It is possible that low densities of blue crab inhabiting a large area that is not commercially fished, effectively shields a proportion of the individuals in the Tampa Bay estuary from economic exploitation, creating a density-dependent natural harvest refugium.