Graduation Year


Document Type




Degree Granting Department


Major Professor

Jon C. Antilla


Acetalization, Asymmetric Catalysis, Chiral Phosphoric Acid, Enantioselectivity, Glycosylation, Organocatalysis


The development of novel asymmetric reaction methodologies has been invaluable in both the academic and industrial world. In just 15 years, organocatalysis has provided a new means of developing asymmetric reaction methodologies using catalysts that are environmentally benign, relatively inexpensive, bench stable, and non-toxic. One development in organocatalysis that is important to our group in particular is chiral phosphoric acid-catalysis. BINOL-derived and VAPOL-derived phosphoric acids have proven to be excellent catalysts for a number of reactions.

The two projects I will discuss my efforts on are acetalization and iso-Pictet-Spengler reactions. These were projects that I performed during my first two years as a graduate student. The acetalization was particularly fascinating as only one literature report existed for the catalytic asymmetric variant of a reaction that makes such important compounds--O,O-acetals. The acetalization reaction proved to be a formidable opponent, and to this date no research report has been published documenting the intra-, or intermolecular catalytic asymmetric acetalization of vinyl ethers or the intermolecular catalytic asymmetric transacetalization.

The iso-Pictet-Spengler reaction is one that is interesting because exhaustive research has been conducted into the development of catalytic asymmetric Pictet-Spengler reactions, but at the time of my research, not a single catalytic asymmetric method existed to synthesize tetrahydro-γ-carbolines, the product of the iso-Pictet-Spengler reaction. Structurally, the tetrahydro-γ-carboline is isomeric to the tetrahydro-β-carboline, the product of the Pictet-Spengler reaction. They differ only in the position of nitrogen in the annulated product. This reaction seemed attractive to investigate, since independent elegant reports by Professors Benjamin List, Henk Hiemstra, and Darren Dixon documented the excellent control over enantioselectivity that chiral phosphoric acid have in the Pictet-Spengler reaction. Concurrent with the beginning stages of this project, Professor Eric Jacobsen reported the enantioselective thiourea-catalyzed iso-Pictet-Spengler reaction. The results were very good but not as great as the Pictet-Spengler work he pioneered. Around the time this report came out I commenced my reaction studies, and this thesis is the sum of just two projects I worked on. There were many more including halolactonization, VAPOL synthesis, chiral phosphoric acid synthesis, catalytic asymmetric hydroamination, and others.