Graduation Year


Document Type




Degree Granting Department

Civil and Environmental Engineering

Major Professor

Abla Zayed


Fineness, Hydration, Mean Particle Size, Modeling, Rate Constant, Strength


The objective of this work is to examine the effect of cement chemistry and physical properties on activation energy. Research efforts indicated that time dependent concrete properties such as strength, heat evolution, and thermal cracking are predictable through the concept of activation energy. Equivalent age concept, which uses the activation energy is key to such predictions. Furthermore, research has shown that Portland cement concrete properties are affected by particles size distribution, Blaine fineness, mineralogy and chemical composition. In this study, four Portland cements were used to evaluate different methods of activation energy determination based on strength and heat of hydration of paste and mortar mixtures. Moreover, equivalency of activation energy determined through strength and heat of hydration is addressed. The findings indicate that activation energy determined through strength measurements cannot be used for heat of hydration prediction. Additionally, models were proposed that are capable of predicting the activation energy for heat of hydration and strength. The proposed models incorporated the effect of cement chemistry, mineralogy, and particle size distribution in predicting activation energy.