Graduation Year


Document Type




Degree Granting Department

Biology (Integrative Biology)

Major Professor

Kathleen M. Scott


bicarbonate transport, carbon concentrating mechanism, carboxysome, chemolithoautotroph, hydrothermal vent



The gammaproteobacterium Thiomicrospira crunogena XCL–2 is a hydrothermal vent chemolithoautotroph that has a carbon concentrating mechanism (CCM), which is functionally similar to that of cyanobacteria. At hydrothermal vents, dissolved inorganic carbon (DIC) concentrations and pH values fluctuate over time, with CO2 concentrations ranging from 20 μM to greater than 1 mM, therefore having a CCM would provide an advantage when CO2 availability is very low as CCMs generate intracellular DIC concentrations much higher than extracellular, thereby providing sufficient substrate for carbon fixation. The CCM in T. crunogena includes α–carboxysomes (intracellular inclusions containing form IA RubisCO and carbonic anhydrase), and also presumably requires at least one active HCO3 µ transporter to generate the elevated intracellular concentrations of DIC. To determine whether RubisCO itself might be adapted to low CO2 concentrations, the KCO2 for purified carboxysomal RubisCO was measured (250 μM SD ±; 40) and was much greater than that of whole cells (1.03 μM). This finding suggests that the primary adaptation by T. crunogena to low–DIC conditions has been to enhance DIC uptake, presumably by energy–dependent membrane transport systems that are either ATP–dependent and/or dependent on membrane potential (δ ψ). To determine the mechanism for active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis andδ ψ. After separate incubations with the ATP synthase inhibitor DCCD and the protonophore CCCP, intracellular ATP was diminished, as was the concentration of intracellular DIC and fixed carbon, despite the absence of an inhibitory effect on δ ψ in the DCCD–incubated cells. In some organisms, DCCD inhibits the NDH–1 and bc1 complexes so it was necessary to verify that ATP synthase was the primary target of DCCD in T. crunogena. Both electron transport complex activities were assayed in the presence and absence of DCCD and there was no significant difference between inhibited (309.0 μmol/s for NDH–1 and 3.4 μmol/s for bc1) and uninhibited treatments (271.7 μmol/s for NDH–1 and 3.6 μmol/s for bc1). These data support the hypothesis that an ATP–dependent transporter is primarily responsible for HCO3 µ transport in T. crunogena. The ATP–dependent transporter solute–binding protein gene (cmpA) from Synechococcus elongatus PCC 7942, was used to perform a BLAST query. Tcr_1153 was the closest match in the T. crunogena genome. However, the gene neighborhood and the result of a maximum likelihood tree suggest that Tcr_1153 is a nitrate transporter protein. Work is underway to find the genes responsible for this ATP–dependent transporter.