Graduation Year


Document Type




Degree Granting Department


Major Professor

Charles B. Connor, Ph.D.

Co-Major Professor

Sarah Kruse, Ph.D.

Committee Member

Diana Roman, Ph.D.


Pyroclastic flow, pyroclastic surge, Northern Volcanic Zone, South American Magmatic Arc, caldera


The thinning trend of a low-aspect ratio ignimbrite (LARI) in a direction of increasing topographic relief at the Pululagua Volcanic Complex, Ecuador, is established by correlating continuous ground penetrating radar (GPR) profiles and radar reflector behavior with stratigraphic measurements and unit behavior. Minimum density-current and vertical (cross-sectional) velocity analyses of the LARIs parent pyroclastic density-current are performed by analyzing the exchange of kinetic energy for potential energy in an upslope direction. Continuous GPR profiles were acquired in a direction of increasing topographic relief with the intent of identifying the LARI within the GPR record and examining the relationships between the LARI and the underlying paleo-topographical surface. Stratigraphic measurements recorded throughout the field area demonstrate that the LARI thins 7.5 m in an upslope direction (over 480 m distance and 95 m elevation). Stratigraphic measurements enable correlations with GPR profiles, resulting in LARI identification. By utilizing GPR derived paleo-topographical surface elevations, minimum flow velocities of the LARI-producing parent pyroclastic density-current at the base of upslope flow are shown to be at least 25 m/s. Vertical velocity analyses based on the identification of internal GPR reflectors, interpreted as flow streamlines, yield pyroclastic surge-like cross-sectional velocity profiles of the LARIs parent density-current. Maximum density-current velocities at the base of upslope flow reach 24 m/s and diminish toward the base of the current.