Graduation Year


Document Type




Degree Granting Department

Mechanical Engineering

Major Professor

Alex Volinsky, Ph.D.


Neutron irradiation, X-ray diffraction, Lattice parameter, Point defects, Thermal annealing


A neutron flux on the order of 2·10²° neutrons/cm² at 0.18 MeV induces formation of point defects (vacancies and interstitials) in single crystal 3C-SiC causing a volume lattice expansion (swelling) of over 3% that can be measured by X-Ray diffraction. The crystal lattice can be completely restored with an annealing temperature equal to or higher than the irradiation temperature. This phenomenon serves as a basis for temperature measurements and allows the determination of the maximum temperature, if the exposure time is known. The single crystal 3C-SiC sensor is applicable to small, rotating and hard to access parts due to its size of 300-500 microns, wide temperature range of 100-1450 °C, "no-lead" installation, inert chemical properties and high accuracy of temperature measurements. These features make it possible to use the sensor in gas turbine blades, automotive engines, valves, pistons, space shuttle ceramic tiles, thermal protection system design, etc. This work describes the mechanism of neutron irradiation of single crystal 3C-SiC, the formation of point defects and their concentration, the different temperature measurement techniques, and the application of Maximum Temperature Crystal Sensors (MTCS) for maximum temperature measurements in both stationary and non-stationary regimes.