Graduation Year

2010

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Chemistry

Major Professor

X. Peter Zhang

Co-Major Professor

Jon Antilla

Committee Member

Roman Manetsch

Committee Member

Mark McLaughlin

Keywords

Corroles, Cobalt(III) Complex, Epoxidation, N-H Insertion, and Cyclopropanation

Abstract

A variety of bromocorroles, useful precusors for Pd-based cross coupling, were sucessfully synthesized in moderate to good yields. Chiral corroles were also synthesized through use of chiral amides in the aforementioned cross coupling reactions. Cobalt complexes bearing π-acceptor (CNtBu) and σ-donor (PPh3) ligands were also prepared in excellent yields. In this dissertation, cobalt (III) corrole complexes were applied to three different reaction areas: epoxidation, N-H insertion, and cyclopropanation. Cobalt(III) corroles were found to be efficient catalysts for epoxidation reactions. The epoxidation reactions can be carried out using ethyl phenyldiazoacetate, an acceptor/donor diazo compound, as a carbenoid precusor.The reaction provided highly diastereoselective epoxides. In addition to epoxidation, N-H insertion reactions using cobalt(III) corroles as catalysts smoothly produced the desired products with diverse diazo reagents. The reactions were screened using ethyl phenyldiazoacetate with a selection of anilines and amides. In order to investigate non-ylide intermediate based metal-mediated catalytic reactions, cyclopropanation was conducted using cobalt (III) corroles as catalysts, producing the desired cyclopropyl nitroesters in high yields and with excellent diastereoselectivity under a concerted mechanism. Asymmetric cyclopropanation reactions were carried out using chiral cobalt(III) corrole complexes to generate the enatiomerically pure desired cyclopropanes in moderate yields.

Share

COinS