Graduation Year

2003

Document Type

Thesis

Degree

M.S.P.H.

Degree Granting Department

Public Health

Major Professor

Lillian Stark, Ph.D.

Co-Major Professor

Ann DeBaldo, Ph.D.

Committee Member

Azliyati Azizan, Ph.D.

Keywords

echovirus, coxsackievirus, surveillance, vp1, rt-pcr, molecular epidemiology

Abstract

The Enterovirus genus within the family Picornaviridae contains over 100 serotypes, of which sixty-four are known to be human pathogens. Infection with this group of RNA viruses produces a myriad of clinical conditions including poliomyelitis, meningitis, encephalitis, respiratory illnesses, and hand-foot-and-mouth disease. Outbreaks have been documented worldwide; significant morbidity and mortality exist to warrant laboratory surveillance.

Traditionally, enteroviruses have been identified to the level of serotype by the serum neutralization assay. However, numerous problems are associated with this assay. The serum neutralization assay is labor intensive, results are often ambiguous, and reagents are becoming difficult to obtain. Recently, molecular-based typing protocols have been described that are cost effective and produce results that are more reliable.

The overall objective of this thesis was to implement a molecular-based typing protocol to replace the serum neutralization method currently used. Three specific aims were identified to reach this objective. First, a database cataloging all enteroviruses isolated at the Florida Department of Health – Tampa Branch Laboratory from 1981 through 2002 was created. Serotype prevalence, specimen submission rates, and temporal trends were analyzed to demonstrate the public health importance of enterovirus surveillance. Next, five oligonucleotide primer sets were compared with respect to sensitivity, specificity, and overall utility in molecular typing protocols developed to accurately determine enterovirus type. Finally, the most effective molecular assay was used to conduct two basic molecular epidemiological analyses of intratypic variation of Coxsackievirus B5 isolates, and of intratypic variation of successive Echovirus 9 passages.

The results from this study show that implementation of a molecular-based typing system for enteroviruses would be an improvement over current enterovirus serotyping methods. Results are obtained more rapidly and are more reliable. The implementation of such a system would improve the surveillance capabilities of the State of Florida Department of Health.

Share

COinS