Graduation Year


Document Type




Degree Granting Department

Civil Engineering

Major Professor

Ashraf Ayoub, Ph.D.


Fiber Optic, Strain sensors, Remote structural monitoring, Smart structures, Fabry Perot, Reinforced concrete-deck type bridges


This research project concerns the construction, testing, and remote health monitoring of the first smart bridge structure in Florida, the East Bay bridge in Gibsonton, Hillsborough County. The East Bay Bridge is a four span, continuous, deck-type structure with a total length of 120' and width of 55'. The superstructure consists of an 18'' cast-in-place reinforced concrete slab, and is supported on pre-stressed pile bents, each consisting of 5 piles. The smart sensors used for remote health monitoring are the newly emerged Fabry --Perot (FP) Fiber Optic Sensors, and are both surface-mounted and embedded in the concrete deck.Static and Dynamic testing of the bridge were performed using loaded SU-4 trucks, and a finite element model for the bridge was developed for the test cases using commercial software packages. In addition, the smart sensors were connected to a data acquisition system permanently installed on-site. This system could be accessed through regular phone lin

es, which permits the evaluation of the bridge behavior under live traffic loads.Currently, these live structural data under traffic loading are transmitted to Hillsborough County's bridge maintenance office to assist in the health evaluation and maintenance of the bridge.AASHTO LRFD Design Code has been investigated using analytical and laboratory test but no attempt has been made to verify its relative outlook with respect to Allowable Strength Design (ASD) and AASHTO Standard Specifications (LFD) in a real field test. The likely reason for could have been the lack of accurate and reliable sensing systems.The data collected as well as the analytical studies through out this research, suggest that current LRFD design specifications for deck-type bridges are conservative. The technology developed under this work will enable practical, cost-effective, and reliable systematic maintenance of bridge structures, and the study will provide a unique opportunity for future growth of this tech

nology in the state of Florida and in other states and finally, long term collected data can be used to keep the design codes in check.