Graduation Year


Document Type




Degree Granting Department

Molecular Medicine

Major Professor

Thomas M. Guadagno, Ph.D.


MEK kinase, extracellular signal regulated kinase, ERK, Cdk1/cyclin B, Cdc2/cyclin B, M-phase, Signal transduction, Cell cycle, Phosphorylation


Activation of the MAPK cascade during mitosis is critical for spindle assembly and normal mitotic progression. The underlying regulatory mechanisms that control activation of the MEK/MAPK cascade during mitosis are poorly understood. The goal of my dissertation research is to identify the MEK kinase responsible for activation of the MAPK cascade during mitosis and to elucidate the biochemical mechanisms that regulate its activity. In the described herein work I purified and characterized the MEK kinase activity present in M-phase arrested Xenopus egg extracts. I demonstrate that B-Raf is the critical MEK kinase required for activation of the MAPK pathway at mitosis. Consistent with this, I show that B-Raf is activated in an M-phase dependent manner. Further, I provide data linking Cdk1/cyclin B to mitotic activation of B-Raf.

Cdk1/cyclin B associates with and phosphorylates B-Raf in M-phase arrested extracts and directly targets Xenopus B-Raf in vitro at a conserved Ser-144 residue. Phosphorylation at Ser-144 is critical for M-phase dependent activation of B-Raf and for B-Raf's ability to trigger activation of the MAPK cascade at mitosis. Finally, I demonstrate that mitotic B-Raf undergoes feedback phosphorylation by MAPK at its conserved C-terminal SPKTP motif. Mutation of both phosphorylation sites within the SPKTP sequence to alanines increases activity of mitotic B-Raf. Further, inhibition or over-activation of MAPK during mitosis enhances or diminishes B-Raf activity, respectively. These results indicate that MAPK-mediated feedback phosphorylation negatively regulates B-Raf activity. Additionally, I show that active mitotic B-Raf exists in large multi-protein complex(s). By utilizing a proteomics approach I identify a set of proteins, which potentially associate with B-Raf at M-phase.

Future studies are necessary to elucidate the involvement of these proteins in regulating B-Raf mitotic functions. In summary, my dissertation studies demonstrate that B-Raf activates MAPK signaling at mitosis and undergoes an M-phase dependent regulation. I propose that B-Raf has important functions at mitosis that contributes to its overall role in promoting cell proliferation.