Graduation Year

2009

Document Type

Dissertation

Degree

Ph.D.

Degree Granting Department

Electrical Engineering

Major Professor

Andrew Hoff, Ph.D.

Keywords

Silicon carbide, Remote plasma, Oxidation, Surface conditioning, Thin films

Abstract

Silicon carbide (SiC) is a wide band-gap semiconductor with advantageous electrical and thermal properties making it attractive for high temperature and power applications. However, difficulties with oxide/SiC structures have posed challenges to the development of practical MOS-type devices. Surface conditioning and oxidation of 4H-SiC were investigated using a novel sequential afterglow processing approach combined with the unique capabilities of non-contact corona-Kelvin metrology. The use of remote plasma assisted thermal oxidation facilitated film growth at low temperature and pressure with the flexibility of sequential in-situ processing options including pre-oxidation surface conditioning. Corona-Kelvin metrology (C-KM) provided a fast, non-destructive method for electrical evaluation of oxide films and semiconductor surfaces.

Non-contact C-KM oxide capacitance-voltage characteristics combined with direct measurement of SiC surfaces using C-KM depletion surface barrier monitoring and XPS analysis of surface chemistry were interpreted relating the impact of afterglow conditioning on the surface and its influence on subsequent oxide thin film growth. Afterglow oxide films of thicknesses 50-500 angstroms were fabricated on SiC epi-layers at low growth temperatures in the range 600-850°C, an achievement not possible using conventional atmospheric oxidation techniques. The inclusion of pre-oxidation surface conditioning in forming gas (N2:H2)* afterglow was found to produce an increase in oxide growth rate (10-25%) and a significant improvement in oxide film thickness uniformity.

Analysis of depletion voltage transients on conditioned SiC surfaces revealed the highest degree of surface passivation, uniformity, and elimination of sources of charge compensation accomplished by the (N2:H2)* afterglow treatment for 20 min. at 600-700°C compared to other conditioning variations. The state of surface passivation was determined to be very stable and resilient when exposed to a variety of temporal, electrical, and thermal stresses. Surface chemistry analysis by XPS gave evidence of nitrogen incorporation and a reduction of the C/Si ratio achieved by the (N2:H2)* afterglow surface treatment, which was tied to the improvements in passivation, uniformity, and growth rate observed by non-contact C-KM measurements. Collective results were used to suggest a clean, uniform, passivated, Si-enriched surface created by afterglow conditioning of 4H-SiC as a sequential preparation step for subsequent oxidation or dielectric formation processing

Share

COinS