Graduation Year

2003

Document Type

Thesis

Degree

M.S.E.E.

Degree Granting Department

Electrical Engineering

Major Professor

Moreno, Wilfrido A.

Keywords

rsvp, explicit routing, traffic engineering, network optimization, overlay model

Abstract

The rapid growth of the Internet, in the last few years, has generated a need to enhance the existing IP networks in the areas of availability, dependability and scalability in order to provide a mission critical networking environment. In contemporary IP networks, data packets are routed as a function of the destination address and a single metric such as hop-count or delay. This approach tends to cause message traffic to converge onto the same link, which significantly increases congestion and leads to unbalanced network resource utilization. One solution to this problem is provided by Traffic Engineering (TE), which uses, bandwidth guaranteed, Explicitly Routed Label Switched Paths (ER-LSPs). Due to the dramatic increase in the backbone speeds, current research focuses more on traffic engineering with LSPs for clear control over the traffic distribution in the network.

However, the growing popularity of the Internet is driving the Internet Service Providers to adapt new technologies in order to support multiple classes of applications with different characteristics and performance requirements. Multi-Protocol Label Switching (MPLS), which was proposed by the IETF provides essential facilities for traffic engineering and reliable QoS services for the Internet. MPLS networks provide the required flexibility for operators to manage their traffic with ER-LSPs. Even though conventional routing algorithms support the ER-LSP setup in MPLS networks, they are not efficient in link residual capacity information updates and limit resource utilization, which eventually leads to LSP failures and unbalanced network resource utilization. This thesis proposes a new architecture with a cluster based distributed routing algorithm to setup bandwidth guaranteed ER-LSPs in MPLS backbone networks.

The proposed routing algorithm confines the route discovery region in order to reduce the routing overhead and computes all possible routes from ingress node to egress node. Based on LSP requirements and network load conditions, the egress node selects the most suitable path from the available paths in order to setup the LSP. This routing scheme optimizes network resource utilization by evenly distributing traffic throughout the network. The Resource Reservation Protocol (RSVP) works in conjunction with the routing protocol for resource reservation and label distribution along the LSP.

Share

COinS