Graduation Year

2003

Document Type

Thesis

Degree

M.S.E.E.

Degree Granting Department

Electrical Engineering

Major Professor

Bhansali, Shekhar

Co-Major Professor

Samson, Scott

Keywords

Multiple wafer bonding, Coventor, Wet etching, Crystallography, Optical communication, Mems

Abstract

A Corner Cube Retro-reflector (CCR) is a device that can be used as transmitters in wireless free space optical communication systems, or remote sensing instruments. A novel approach to fabricate the CCR is developed, where almost 100$\%$ of the planar chip area acts as the CCR compared to the maximum of 33$\%$ in the prior MEMS CCRs. Unlike the conventional micro machined CCRs that have two planes (mirrors of the CCR) normal to the surface of the wafer, our approach yields all the mirrors within the bulk of the wafer, ensuring very high packing densities and wide acceptance angles. The crystallography of single crystal silicon wafer along with different micromachining and wafer bonding techniques are used to fabricate and assemble the CCR. The solid models of both the active and passive CCRs were built using Coventorware simulation software. In the active CCRs, one of the mirror was electrostatically actuated; this is simulated using the software.

Share

COinS