Graduation Year

2009

Document Type

Thesis

Degree

M.S.

Degree Granting Department

Chemistry

Major Professor

David J. Merkler, Ph.D.

Keywords

Kinetics, Enzyme, Quinone, Mushroom, Oxygen electrode

Abstract

Tyrosinase is a widespread, highly studied and important enzyme involved in processes ranging from the browning of mushrooms to roles in mammalian cancer. The enzyme suffers from a noticeable lag phase while the enzyme generates all necessary cofactors from available substrates. There have not been significant studies of the effect on lag from moving through a family of substituted substrates. This thesis reports the results of one such study using a family of N-acyltyramines. The selection of N-acyltyramines was ideal because the substrates in this reaction may be related to synthesis of N-acyldopamines, which serve many important physiological functions. It was concluded that the product formed from N-acetyltyramine is 1-acetyl-2,3-dihydro-1H-indole-6,7-dione, a quinone.

Share

COinS