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Figure 3.3 Distance rasters used to derive location variables (ESRI, 2015) 

3.3 Image classification to derive land use/cover information 

 Figure 3.4 is a schematic of the methodology applied to extracting land use/cover 

information from Geo Eye Image. The purpose was to extract land use/cover information which 

could be used to quantify physical appearance of statistical units. A stepwise/hierarchical  image 

classification approach similar to  that used by Pu and Landry (2012), was adopted. This involved 

extracting green vegetation cover initially, which was then used as mask for subsequent extraction 

of other urban surfaces using object based image classification. 

3.3.1 Vegetation extraction and masking 

 In this study, a vegetation index was used to reduce original 4-band image into a single 

dimension. Vegetation indices enhance the information content of imagery to highlight vegetation 

areas. They are a normalized 1-dimensional representation of 2 original spectral bands, with higher 

values associated with vegetated pixels. The Normalized Difference Vegetation Index or NDVI 

(Rouse et al, 1971) is the most commonly used vegetation index, but for this study we used the 
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Soil Adjusted Vegetation Index (Mason & Baltsavias), which is designed to account for the 

attenuating influence of background soil brightness on vegetation spectra (Huete, 1988; Pu, 

Landry, & Yu, 2011). SAVI is more suitable for urban environments especially in Sub-Saharan 

Africa where bare soil surfaces are common and influence vegetation spectra. 

 

Figure 3.4 Satellite image processing workflow  

 Using the Band Expression tool in ENVI software (EXELIS, 2012), the soil adjusted 

vegetation index (Mason & Baltsavias) was calculated from the red and near infra-red (NIR) bands 

of the pan-sharpened GeoEye imagery as follows: 

𝑆𝐴𝑉𝐼 = (
𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 3

𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3+ 𝐿
) ∗ (1 + 𝐿),               (1)  

 Where Band 3 = red channel, Band 4 = near infra-red channel and L = soil brightness factor 
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(0.5 used in this case). The output was a raster layer with values ranging from -1.5 to +1.5. This 

was rescaled to a 0 - 1 range using stand deviation stretch method.  

 A combination of Jenks Natural Breaks (Taubenböck & Kraff) classification and 

agglomerative hierarchical clustering) was implemented as a novel unsupervised classification 

technique to derive vegetation class image from SAVI data (Anchang, Ananga, & Pu, 2016). The 

NB method was used for classification of SAVI data into ten (10) unlabelled classes. The purpose 

of this was to determine if the natural clusters in SAVI data space can effectively separate 

vegetation from other land cover. To classify a continuous variable (x) into k number of classes, 

the NB algorithm randomly selects a set of k-1 values within the range of ordered values of x and 

uses them as initial class boundaries. The means for each class and the sum of squared deviations 

of class values from class means is calculated.  The total sum of squared deviations (SSDT) for all 

classes is noted. Then values are moved to neighbouring classes if they are closer to those class 

means and thus reducing the overall SSDT. This process continues iteratively until SSDT is at 

minimum or falls below a threshold value (De Smith, Goodchild, & Longley, 2007). The NB 

method was used to create 10 unlabelled classes for which class statistics (means and variances) 

were calculated and stored in a signature file. 

 In order to derive vegetation/non-vegetation binary layer, the dendrogram tool in ArcMap 

(ESRI, 2015) was used to produce a hierarchical clustering scheme for merging the classes derived 

from initial NB classification of SAVI data. The underlying procedure can be explained as follows: 

First, using class statistics stored in the signature file generated from the NB classification, the 

Euclidean distance, D, between all possible pairs of initial SAVI classes is calculated, 

 D = √(m - n)2,                                               (2) 

where m and n are the means of any 2 classes (m and n) respectively.  
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 The algorithm then proceeds to merge closest pair for classes (in terms of D). After 

merging, D is updated between all classes and then the next closest pair is merged. The process 

continues iteratively until all classes have been merged. The resulting dendrogram shows hierarchy 

of merged pairs from which any desired number of classes can be obtained. 

Using the hierarchy displayed in the output dendrogram, two final classes were obtained and 

labelled intuitively as vegetation/non-vegetation.  

3.3.2 Object based extraction of non-vegetation land use/cover classes 

 After obtaining the vegetation class image, a mask was created for the original 

multispectral GeoEye image to exclude vegetation from to further image classification. The next 

classification process was aimed at deriving eight (8) non-vegetated land cover/land use classes: 

roofs, paved road, dirt road, bare soil, building shadow, tree shadow and non-vegetated/bare fields. 

Prior extensive visual assessment of the scene data revealed that in addition to vegetation, this was 

an exhaustive list of land cover/land use types within the study area.  This is also in support of the 

assertion that human settlements essentially comprise buildings, roads and open spaces (Pesaresi, 

Ehrlich, Gamba, & Herold, 2009). Image classification was done using object based methodology 

to facilitate the extraction of settlement features from high resolution imagery (Hofmann et al., 

2008). This employs not only spectral information but also spatial/contextual information. In total, 

there were 3 main steps: image segmentation to derive image objects, selection of optimal image 

objects features and image object classification.  

3.3.2.1 Image segmentation 

 The edge detection segmentation algorithm provided within the ENVI Feature Extraction 

Module was used (EXELIS, 2012). This algorithm uses the Sobel method (Sobel & Feldman, 

1968) which assumes that intensity gradient is highest at the edges. By taking the first derivative 
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of the image in both x and y direction, the maxima and minima (edge) can be determined. 

 Five bands were stacked and used for image segmentation: the four original spectral bands 

(Blue, Green, Red and Near Infra-Red) and a SAVI band. The inclusion of the SAVI layer was not 

for vegetation extraction but because it was believed it was still useful for separating some other 

classes, such as bare soil and tilled agricultural fields. The segmentation process was controlled by 

two key user-determined parameters: the scale parameter and the merge parameter, both of which 

can take any value from 0 - 100. The scale parameter determines the size of image objects to be 

created while merge parameters allows for adjacent image objects to be merged based on similarity 

of their attributes. Using the sample visualization window provided by the software and trying 

multiple values, it was determined that a scale parameter of 15, a merge parameter of 80, and 5 x 

5 filter window for texture, produced good results in terms of segmenting features of interest. 

3.3.2.2 Selection of optimal features/attributes 

 The segmentation process resulted in created of image objects for which 54 image object 

features (attributes) were calculated automatically by the algorithm (Table 3.1). These include 20 

spectral feature (4 for each band), 20 textural features (4 for each band) and 14 spatial/geometric 

features. This increase in dimensionality necessitated a feature selection step to minimize 

classification errors.   

First, by overlaying image object outlines over original composite image, a training sample 

of image objects was manually selected. Table 3.2 shows the classes and the number of image 

objects. Classes were determined by careful and extended visualization of all areas within the 

image. In order to select optimal attributes for differentiating classes, an ensemble decision tree 

model, the Extra Trees classifier (Geurts, Ernst, & Wehenkel, 2006) was implemented on the 

training sample. This was obtained using the python Machine Learning (Scikitlearn) library. This 
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technique is a non-parametric classification technique that can output feature importance scores 

which ranks features per their importance in separating classes of interest. Using the mean feature 

importance score as a cut-off, 19 of the original 54 features were selected and retained for image 

classification (see Figure 3.5).  

Table 3.1 Description of object feature attributes 

Object Feature categories Feature label Description 

Spectral features  

(20 features) 

savg_b_n Mean of band n 

sstd_b_n Standard deviation of band n 

smin_b_n Minimum of band n 

smax_b_n Maximum of band n 

Textural features  

(20 features) 

tavg_b_n Mean (texture) of band n 

tvar_b_n Variance (texture) of band n 

tent_b_n Entropy (texture) of band n 

tran_b_n Range (texture) of band n 

Spatial/Geometric features  

(14 features) 

fx_area Object area 

fx_length Object length 

fx_convex Object convexity 

fx_solid Object solidity 

fx_round  Object roundness 

fx_formfac Object form factor 

fx_elong Object elongation 

fx_rectfit Object rectangular fit 

n = spectral band number (1 - 4) 

Table 3.2 Description of training sample used for object classification 

Training class Number of objects 

bare soil 114 

Dirt road 150 

fields 100 

paved road 145 

roof 122 

roof (dark) 71 

roof (dust covered) 113 

Shadow (building) 120 

Shadow (other) 80 

Total 1015 

 



 

56 

 

 

Figure 3.5 Object feature selection based on feature importance score (IBM, 2012)  

3.3.2.3 Image object classification  

 A multiclass support vector machine (SVM) (Cortes & Vapnik, 1995), available within 

ENVI Feature Extraction module  was trained and used to classify all image objects  into land 

cover classes, using the 19 most important features obtained from feature selection process. SVMs 

are robust supervised classifiers that have been successfully applied to land cover classification 

from remote sensing data (Huang, Davis, & Townshend, 2002; Pal & Mather, 2005).  

 Using training information, a SVM classifies data points into 2 groups by implementing an 

optimal boundary (or hyperplane) that maximizes the separation between these groups 

(Mountrakis, Im, & Ogole, 2011). Although nominally a linear classification technique, SVMs can 
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It also reports the Kappa coefficient of classification scheme, which is measure of agreement 

between observed (test) and predicted (classified) samples (Lillesand, Kiefer, & Chipman, 2004). 

 

 

Figure 3.6 Image subset showing selection of test areas/pixels for accuracy assessment (EXELIS, 

2012) 

Table 3.3 Description of samples selected for accuracy assessment  

Class Number of ROIs Actual number of pixels 

Roofs 75 20,273 

Open Space/vegetation 75 20,082 

Paved road 75 18,670 

Dirt Road 75 10,088 

Bare Soil 75 20,482 

Building Shadow 75 10,162 

 

3.4 Variables used in the study 

 Based on the theory, and considering the housing and physical attributes of Bamenda, the 

following variables were extracted for each statistical unit and used to answer the three main 

research questions: 

3.4.1 Household survey variables aggregated per statistical unit 

1. percentage of households without access to piped-borne water (both home and external) 

2. percentage of tenant households (non-owner) 
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- Variable clustering overcomes the orthogonal constraints of traditional PCA/EFA: only a 

specific subset variables belong or contribute information to a specific latent factor 

 

Figure 3.7 Specified options in SPSS used for hierarchical clustering of variables (IBM, 2012) 

 It is important to note that HVC was just an exploratory tool used for data mining and 

visualization. It informed on the correlations between variables and the optimal number of 

homogenous subgroups into which these variables could be classified. It did not automatically help 

identify the potential latent factors nor quantify them. To achieve this, a combination of visual 

assessment of the resulting dendrogram and a subjective conceptual interpretation of the original 

indicators was used.  

Visual interpretation of factors made use of the horizontal axis which represents the scaled 

similarity/dissimilarity between hierarchies of merged pairs. SPSS outputs this on a unit-less scale 

of 0 - 25. This allows for easy visual determination of best cluster solutions by observing relative 

distances between hierarchical merge levels. The best solution (number of clusters) is the one that 

has maximum dissimilarity between merged pairs. For example, assume we are given 5 

hypothetical variables (v1 - v5) and an output dendrogram as shown below (Figure 11). To 

determine if these indicator measurements can be organized into latent factors, we determine at 
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what point of the hierarchy (a - d), the dendrogram should be "cut" or "pinched" to produce the 

optimal number of groups of variable. This will be point which results in the highest dissimilarity 

(i.e., lack of correlation) between different groups. Using this hypothetical example, this will be 

around d, which will result in variables being classified into 2 homogenous subgroups: group 1 

(made up of v1 and v2) and group 2 (made up of v3, v4 and v5) (Figure 3.8).   

As each derived cluster represents a set of highly correlated variables, they can serve as an 

indication of the presence of unseen factors. However, for this to be conclusive, the variables 

belonging to the same cluster (group) must be associated in meaningful way. If majority of 

variables within a group share a similar conceptual denomination (i.e. a common theme), this will 

enable proper labeling of the latent factor that is to be derived. For example, if it can be determined 

that most members of a group of correlated variables were directly related to access to basic 

household utilities, then the group can be said to suggest the existence of a "utilities" related factor.  

 

Figure 3.8 Hypothetical example showing hierarchical clustering of variables  
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3.5.2 Quantifying derived latent factors as multiple slum indices 

The previous section explains how potential latent factors were deduced from a set of 

original indicator measurements using variable clustering. However, unlike traditional factor 

analysis which produces factors scores as part of a linear regression fitting, variable clustering 

merely results in the classification of variables into homogenous groups. Each group may be 

construed as indicative a factor but does not directly quantify these factors for further quantitative 

analyses 

In this study, for each group of positively correlated variables (i.e., each derived latent 

factor), a slum binary index (high/low) was created using k-means classification (Hartigan & 

Wong, 1979). This was applied to the 63 statistical units (cases) using only variables within the 

suggested factor group. K-means is a popular and efficient clustering algorithm that works by 

classifying observations based on the Euclidean distance measure. Unlike AHC, K-means is one-

step/flat clustering procedure that requires the desired number of output groups to be specified a 

priori. It then iteratively minimizes the total sum of squared differences within groups and 

maximizes the separation between groups.  

In this study, the variables belonging to each derived factor group were all positively 

correlated. When K-means classification is applied to only positively correlated variables, it is 

analogous to clustering a single variable, resulting in groups that could be intuitively labeled as 

"high" or "low" in terms of the contributing variables. Considering the nature of original variables 

used in this research (e.g. per cent of households lacking a facility), " high" indicated greater 

disadvantage/deprivation while "low" indicated less disadvantage/deprivation with respect to the 

latent factor.  The choice of binary (2-group) classification was to allow for this simple 

conceptualization of relative "high" and "low" and to facilitate subsequent analyses using 
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independent sample testing. 

This approach of index construction can be considered superior to creating simple 

summation/averaging index as the latter simplistically places equal importance among 

contributing variables. The K-means classification output, on the other hand, is more influenced 

by the variables with greater variance than those with less. In other words, the resultant 

classification of high and low is weighted in terms of original variables. Also, it avoids the use of 

any arbitrary, theoretical or subjective threshold, but utilizes only the data to determine relatively 

what is "high" and what is "low" in local context.  

3.5.3 Validating indices using location theory 

The binary slum indices were validated by investigating their relationship with three 

theorized settlement location attributes. Using SPSS software (IBM, 2012), independent t-tests 

were conducted to determine if units with different index values (i.e. "high" and "low") were also 

significantly different with respect to settlement location. The generalized null hypothesis could 

be stated thus: for any variable (v) measuring unit location, there was no difference between units 

of “high” or “low” slum index categories in term of v. The locational variables tested were as 

follows:  

- Mean distance (m) to central commercial district (indicating centrality) 

- Mean distance (m) to nearest town market (indicating both centrality and closeness to 

major source of informal employment) 

- Mean distance (m) to closest major access road (indicating accessibility to transport 

network) 

Centrality, accessibility and proximity to source of income are all theoretically established 

location attributes that can help to profile slum residents (Gulyani & Talukdar, 2008; UN-
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HABITAT, 2003). Statistical inference was made at significance level of 0.05, and the general null 

hypothesis was that units of "high" and "low" classification (as per derived binary indices) were 

not significantly different with respect to location attributes. 

3.6 Objective II: To investigate the potential of unsupervised learning for mapping slum 

conditions using physical settlement attributes 

The second major objective of the dissertation research was to determine if slum conditions 

could be inferred by unsupervised/inductive learning from physical settlement attributes derived 

primarily from imagery. To realize this objective, the following research questions needed to be 

answered: what are the different physical categories/types into which statistical units can be 

classified? Do these types reflect differences in household slum conditions and settlement location 

attributes? 

3.6.1 Classifying units into unlabeled physical types/categories 

A multistep   approach was employed to derive the best classification of statistical units 

into physically similar categories. The following 6 settlement variables derived from land 

use/cover classification of satellite imagery were used: 

- Percent open space area (green vegetation and fields) 

- Percent roof area (building density/coverage) 

- Building shadow area to roof area ratio (additional indicator of building density and sizes) 

- Percent unpaved surface area (dirt road plus bare soil surfaces) 

- Percent paved road surface area (as a fraction of total road surface area) 

- Mean Slope 

First of all, a principal component analysis was performed using SPSS software (IBM, 

2012) on the above 6 variables to reduce noise in the data and maximize variance. This was 
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expected to lead to best separation of potential clusters. The first two derived principal components 

(with eigen values > 1) were extracted and used for unsupervised classification of statistical units. 

The hierarchical clustering (AHC) algorithm provided by SPSS software was used to classify units 

into groups based on physical similarities.  The general description of the algorithm has previously 

provided (see section 3.4.1). However, in this case the objective was to classify observations 

(statistical units) and not variables and made use of squared Euclidean distance between 

observations and clusters, assuming complete (furthest neighbor) linkage.  

The squared Euclidean distance has an optimization edge over normal Euclidean distance 

by emphasizing the contrast between distant clusters more than closer ones. Complete linkage also 

leads to the finding of more compact and less chained clusters. A range of solutions (2 - 10 clusters) 

was specified as output and the dendrogram was visually inspected to determine the best cluster 

solution, using scaled distance between merged pairs. The best clusters were deemed to be the one 

with largest average inter cluster distance. 

3.6.2 Comparing physical types in terms of household and location attributes 

Using SPSS software (IBM, 2012), Kruskal-Wallis (KW) tests (Kruskal & Wallis, 1952) 

were carried out to test the null hypotheses that physical categories of units were not different in 

terms of household slum indicators and location attributes. The KW test is the non-parametric 

equivalent analysis of variance (ANOVA) and was chosen as the data did not fully meet the 

necessary assumptions such as normality of distribution within groups and homogeneity of 

variances. Unlike ANOVA, the KW test does not employ distribution-dependent measures such as 

means and variances. It works by ranking observation in each category and tests if the general 

distribution is the same across categories. Inference was made at a significance level of 0.05. 

The following dependent variables were used to determine statistically significant 
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differences between derived neighborhoods (UN-HABITAT, 2003): 

Household variables: 

- Percent of households without pipe borne water 

- Percent of households without flush toilet 

- Percent of non-owner (tenant) households 

- Percent of households living in a single room or studio 

- Percent of households with > 2 persons per bedroom 

- Percent of Households without storm water drainage 

Location variables: 

- Mean distance to CBD 

- Mean distance to nearest town market 

- Mean distance to closest main access road 

3.7 Objective III: To determine neighborhood scale for mapping slums  

The third major objective of this research was to tackle the scale and boundary problem 

related to slum mapping. Analytic regionalization, also known spatially constrained clustering 

(Patino & Duque, 2012; Weeks et al., 2007), was employed in order to determine the optimal 

neighborhood scale and boundaries for mapping slum conditions.  The rationale for this objective 

was based on the following premise: 

- The statistical units used in this study were subject to aggregation problems such as the 

modifiable areal unit problem (MAUP). 

- Most of the units were smaller than what is typically considered a city neighborhood, thus 

allowing them to serve as building blocks. 

- The physical attributes of statistical units reflected slum conditions within them and hence 
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could be used to delineate contiguous slum neighborhoods. 

Under this objective, the following research questions were addressed: can physically 

homogenous and contiguous neighborhoods be formed from adjacent statistical units? Are these 

neighborhoods different with respect to household slum conditions?  

3.7.1 Spatially constrained clustering of spatial units  

A minimum spanning tree (MST) algorithm was used to group statistical units into 

contiguous neighborhoods (regions). This made use of image derived attributes (similarly used for 

classifying units into physical types – see section 3.6.1). In addition to mean slope, mean elevation 

was included as a terrain measure. This was meant to help separate units located at the top of the 

Bamenda Escarpment (an area known locally as "Hill Top Station") as these cannot be considered 

contiguous with the rest of the city. 

A detailed explanation of the MST algorithm is provided by Assunção et al. (2006). In 

summary, the technique uses a connectivity graph to represent spatial units such that each edge in 

the graph represents a link between adjacent features (Figure 3.9a). Associated with each edge is 

a cost function that reflects the dissimilarity between the connected units (i.e., their Euclidean 

separation in attribute space). Edges associated with a high dissimilarity are pruned reducing the 

graph to edges that only link very similar regions (Figure 3.9b). This process can continue 

iteratively, each time resulting in a simpler graph. The objective is to achieve  the least complex 

graph  or a minimum spanning tree that will lead to the formation of larger regions that are 

homogenous within themselves and quite distinct from each other with  respect to the attributes of 

interest (Assunção et al., 2006). 

 



 

70 

 

 

Figure 3.9 Depiction of MST algorithm: a) Connectivity graph; b) Minimum spanning tree after 

graph pruning (Assunção et al., 2006, p. 800)  

The Grouping Analysis Tool provided within the ArcMap Spatial Analyst tool box (ESRI, 

Redlands, CA) was used for this objective. It utilizes the MST algorithm for spatially constrained 

clustering. Figure 3.10 shows the tool input parameters. The dissimilarity measure used was the 

Euclidean distance. K-nearest neighbors were specified as spatial constraint instead of contiguity 

edges. The latter were not being applicable as there were existing gaps due to the omission of 

certain areas from the study (see section 3.2.2 and Figure 3.1 for details).  

Just like with most non-hierarchical clustering algorithms, the tool requires the arbitrary 

specification of the number of regions that is desired. However, as part of the output, it can be 

programmed to generate a Pseudo-F statistics plot for a possibility of 2-15 groups. The number of 

groups with the highest Pseudo-F statistic value is considered the best solution from a statistical 

clustering point of view, i.e., the solution with the best separation between groups. For this study, 

the tool was run first by specifying a random number of desired groups just to derive Pseudo-F 

plot. Then a second run was carried out by specifying the optimal number of groups as determined 
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by the plot. 

 

Figure 3.10 Tool input parameters for first run of spatially constrained clustering using ArcMap 

(ESRI, 2015) 

3.7.2 Comparing derived regions in terms of household attributes 

Kruskal Wallis tests were conducted, at a significant level of 0.05, to determine if at least 

2 analytically derived city regions or neighborhoods were significantly different with respect to 

household slum conditions. KW tests were used after determining that assumptions for ANOVA 

were not met. The following dependent variables were used to determine statistically significant 

differences between derived neighborhoods: 

- Percent of households without pipe borne water. 

- Percent of households without flush toilet. 

- Percent of non-owner (tenant) households. 

- Percent of households living in a single room or studio. 

- Percent of households with > 2 persons per bedroom. 

- Percent of Households without storm water drainage. 

 



 

122 

 

could be collapsed into fewer latent slums factors, each reflecting a different dimension of the slum 

problem. When quantified as binaries, these factors were validated using settlement location 

theory. The results also demonstrate the effectiveness of using hierarchical variable clustering as 

an unconventional but effective and easier to understand surrogate for exploratory factor analysis 

(EFA). This is particularly important as traditional EFA may not always be eligible given certain 

data conditions.  

The results from carrying Objective II revealed that local areal units could be classified 

using hierarchical clustering into settlement types that had distinct physical features. The 

differences in physical attributes could be used to infer differences in household slum conditions. 

For example, the “steep slope” physical type had significantly higher mean household slum 

conditions. This means that physical settlement attributes can be relied on to profile local housing 

conditions even when housing data is unavailable. 

Objective III was designed specifically to tackle the problem of scale effects on mapping. 

The results revealed that the original spatial units could be grouped intelligently, using image 

derived land cover attributes and spatial constraints, to derive larger contiguous units. These 

derived areas were each homogenous with regards to some physical attribute and could serve thus 

as proxies for the “neighborhood” scale. Direct comparison revealed that derived ‘neighborhoods’ 

were also significantly different from each other in term so household conditions. This was used 

to identify the largest possible contiguous slum or non-slum neighborhood within the city.  

7.3 Policy implications of the study   

The overall strength of the methods investigated in this research lay in their data-driven 

nature. This means that the results were fully sensitive to the local conditions, in this case 

Bamenda, Cameroon. This is ideal for mapping a phenomenon such as slums, which inherently 
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suffers from high heterogeneity.  

The findings of this research have significant implications for local urban planning policy 

and practice. The first and most obvious area that this research impacts is in optimizing the 

provision and improvement of basic services such as water. The multi-index approach to mapping 

slums allows for a spatially diverse perspective of household conditions in an area. This is a more 

accurate and informative way of depicting local slum conditions, as opposed to using a single “tell-

all” index that would simply measure the totality of slums attributes. This is akin to how factorial 

ecology helped in the understanding of the spatial structure of cities from a socio-economic 

perspective.  

On the policy front, the multi-index measurement approach could allow for intervention 

efforts to be compartmentalized. Areas dominated by a specific service problem, e.g. lack of piped 

water, could receive focused attention of a nature that is tailored only to that problem. A good 

example could be the establishment of more stand pipes in a locale or improving the service 

network infrastructure. This would be more resource-efficient from the service provider’s point of 

view. In the same vein, an area dominated by problems such as overcrowding would receive a 

different but suitable type of intervention.  

Slum clearance has been on the rise on recent decades and often has significant 

consequences for the livelihoods of many urban residents in developing countries. A further 

implication of multi-index mapping is that, by being able to pin-point areas with unique critical 

issues, clearance activities can now be designed to be more surgical, affecting fewer people than 

would be the case of blanket targeting of slum residents. This would help dilute the overall negative 

impacts of such controversial practices. 

Public health can also be impacted by multi-index mapping. The ability to pin-point areas 
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that have the most critical water and sanitation issues means it is possible to determine urban 

residents most vulnerable to a public health crisis. Outbreaks of diseases such as cholera are 

frequent in developing countries and are highly dependent on the quality of water and sanitation 

facilities. Health officials can tailor sensitization efforts in relevant areas and can make sure local 

health clinics and centers are equipped for such eventualities. 

In terms of urban planning practice, this research’s findings can lead to improvement in 

operational efficiency, such as in the monitoring of slum areas. First, remote sensing data is not 

only cheaper to obtain, but provides better space-time coverage. It is also immune to political 

machinations, falsification, and bias. When it comes to mapping of slums from image data, the 

unsupervised classification approach is an inductive learning process, not unlike natural human 

learning. It does not require prior knowledge of slums in the area nor does it depend on rigid slum 

stereotypes.  From a practical perspective, this means unsupervised classification offers greater 

efficiency and automation in the mapping process. It also means the possibility of undertaking 

rapid and frequent slum appraisals at city wide scales without the need for ground survey. This 

could be useful very useful for resource challenged urban centers like Bamenda. With the high 

dynamism within slum areas and the high frequency with which imagery can be acquired, this 

approach can form the platform for developing a cost-effective monitoring tool. 

This research can significantly impact urban spatial planning. In this regard, the 

implications of quantitatively deriving contiguous neighborhood-like units are huge.  This is 

especially true if said derived units can be easily labeled as slums or not. Analytic regionalization 

helps to mitigate problems like the MAUP by revealing the true spatial extent of the slum hotspots. 

This would render geographic targeting much more accurate and effective. Not only is it possible 

to determine the general location of deprivation, but also the true extent of it. The use of analytic 
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neighborhoods is superior to the use of communes (too coarse) or vernacular neighborhoods, both 

of which are currently the only officially recognized forms of spatial organization within the city 

of Bamenda. From the results in this study, it can for example be suggested that local authorities 

in Bamenda redefine/redesign the city neighborhood boundaries to reflect the analytic framework. 

This can in turn positively impact several domains.  

In terms of public health, it would allow for optimal allocation of local clinics and health 

centers, each tailored to the needs of the immediate and relatively homogenous population. 

Similarly, non-critical service industry entities such as banks and credit unions can deploy local 

branches offices with services and offerings tailored to the local community. Furthermore, the 

analytic regions can serve future purposes such as provide a better basis for spatial sampling for 

surveys and censuses. Future studies can now include for example, a “slum sample” in their 

analyses.  

Climate change mitigation and disaster management are areas that can also be significantly 

impacted by this study. Derived analytic regions for example can also serve as a platform of spatial 

understanding of environmental justice and equity issues.  Climate change mitigation actions such 

as tree planting could be guided by careful consideration of urban structure in term of physical and 

housing attributes. This framework can help determine if existing tree planting efforts are biased 

in favor of more affluent or less deprived neighborhoods. The ability to define slum areas based 

on physical attributes can also be harnessed for disaster planning. For example, areas located near 

steep slopes and escarpments are most vulnerable to landslides. If such areas also happen to have 

the worst housing conditions, as is the case with Bamenda, this would further magnify the problem 

and hence need for action. 

Finally, the study could significantly impact upon urban security. Though slums are today 
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largely defined purely in terms of housing and settlement attributes, it is a well-known fact that 

slum areas around the world constitute some of the most insecure and outright dangerous places 

for human habitation. This is compounded by the high densities and lack of roads which limits 

accessibility to such areas. The ability to quickly profile and map urban areas based on their 

physical attributes can be a useful tool for law enforcement and social workers to prioritize and 

monitor areas that have high potential for becoming hotspots for crime and unrest. 

7.4 Limitations to the study and avenues for future research 

One limitation in this study is the use of only 6 original slum variables for multi-index slum 

measurement.  For convenience, these variables were chosen as they closely fit the UN-Habitat 

point criteria for defining slums. However, it must be acknowledged that there are a many more 

slum related indicators that could be measured at the household level and that could lead to the 

discovery of more latent slum factors. It is therefore recommended that additional variables be 

included in future studies. Such variables do not have to be limited to universally recognized slum 

indicators and may even be derived intuitively or from qualitative local surveys.  

The results of image based unsupervised classification of areal units into physical slum 

types, or their combination into analytic neighborhoods, is limited to the specific case of Bamenda 

and the time of image acquisition (i.e., December 2012). Considering the dynamic and varied 

nature of urban areas, it is recommended that the evidence established in this research be extended 

by examining additional urban areas in the region. This will confirm the general usefulness of these 

methods.  It is also recommended that longitudinal element be added by using multi-date imagery. 

In the case of deriving analytics neighborhoods, this study only made use of one algorithm 

(the minimum spanning) as it was conveniently part of the ArcGIS software suite. However, there 

are many algorithms in existence with different mathematical approaches and hence potentially 
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different mapping outcomes. It may be informative to undertake a study that looks at the impact 

of using different regionalization techniques on the ability to accurately delineate slum boundaries. 
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APPENDIX I – INDEPENDENT T TESTS RAW OUTPUT 

 

Occ_D groups by location 

 Levene's Test for 

Equality of Variances 

t-test for Equality of Means 

F Sig. t Df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval 

of the Difference 

Lower Upper 

to_mkts 

Equal variances 

assumed 

6.071 .017 2.576 61 .012 594.79300 230.85804 133.16381 1056.42219 

Equal variances not 

assumed 

  3.198 46.988 .002 594.79300 185.99515 220.61651 968.96948 

to_cbd 

Equal variances 

assumed 

3.023 .087 .479 61 .634 160.30918 334.54560 -508.65609 829.27445 

Equal variances not 

assumed 

  .554 39.345 .583 160.30918 289.42946 -424.95318 745.57154 

to_rds 

Equal variances 

assumed 

6.649 .012 2.196 61 .032 197.68066 90.03764 17.63928 377.72205 

Equal variances not 

assumed 

  2.952 56.243 .005 197.68066 66.97615 63.52409 331.83724 

 

UT_D groups by location 

Independent Samples Test 

 Levene's Test for 

Equality of 

Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence Interval of 

the Difference 

Lower Upper 

to_mkts 

Equal variances 

assumed 

5.719 .020 -1.133 61 .262 -272.55194 240.57703 -753.61545 208.51156 

Equal variances 

not assumed 

  -1.345 42.062 .186 -272.55194 202.59415 -681.38550 136.28162 

to_cbd 

Equal variances 

assumed 

2.900 .094 -1.557 61 .125 -511.74293 328.70796 -1169.03513 145.54927 

Equal variances 

not assumed 

  -1.797 39.227 .080 -511.74293 284.72790 -1087.55296 64.06710 

to_rds 

Equal variances 

assumed 

2.048 .157 -1.385 61 .171 -127.50124 92.09176 -311.65010 56.64762 

Equal variances 

not assumed 

  -1.684 44.678 .099 -127.50124 75.70813 -280.01560 25.01312 
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APPENDIX II – IMAGE CLASSIFICATION ACCURACY 

 

Error/Confusion Matrix 

 Ground Truth(Percent) 

Class roof bare soil paved road dirt road shadow open space Total 

roof  99.61 2.15 3.32 3.17 39.67 0 25.67 

bare soil 0.3 93.7 0 11.21 0 0 20.43 

paved road 0 0 96.41 0 0 0 18.05 

dirt road 0.1 4.15 0.27 85.62 0.3 0 9.6 

shadow  0 0 0 0 54.53 0 5.55 

open space 0 0 0 0 5.41 100 20.68 

Total 100 100 100 100 100 100 100 

 

Commission and Omission errors 

Class    Commission (%) Omission (%) 

roof  21.13 0.39 

bare soil 5.84 6.3 

paved road 0 3.59 

dirt road 9.92 14.38 

shadow  0 45.47 

open space 2.67 0 
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APPENDIX III – PRINCIPAL COMPONENT ANALYSIS RAW OUTPUT 

 

SPSS output of Principal Component Analysis on physical settlement attributes used for 

Hierarchical Clustering 

Communalities 

 Initial Extraction 

% paved road 1.000 .680 

% dirt road 1.000 .894 

% bare soil 1.000 .863 

% roof 1.000 .967 

shadow/roof ratio 1.000 .664 

% open 1.000 .989 

slope 1.000 .770 

Extraction Method: PCA 

 

Total Variance Explained 

Component Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 4.800 68.577 68.577 4.800 68.577 68.577 

2 1.027 14.677 83.254 1.027 14.677 83.254 

3 .754 10.769 94.023    

4 .360 5.136 99.159    

5 .031 .443 99.603    

6 .028 .397 100.000    

7 9.162E-007 1.309E-005 100.000    

Extraction Method: Principal Component Analysis. 

 

Component Matrixa 

 Component 

1 2 

paved_pct .657 .498 

dirt_pct .914 -.244 

bare_pct .892 -.260 

roof_1 .968 .175 

Shad .804 .133 

Open -.975 -.197 

slope -.453 .751 

Extraction Method: PCA 

a. 2 components extracted. 
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APPENDIX IV – KRUSKAL WALLIS TESTS RAW OUTPUT 

Physical type by household slum variable 
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 Physical type by location attribute 

 

Regions by household slum variable 

 


