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Abstract

This study analyzed treatment of geometric transformations in presently available
middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four
widely used textbook series were evaluated: two mainline publisher series, Pearson
(Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF)
funded curriculum project textbook series, Connected Mathematics 2; and one non-NSF
funded curriculum project, the University of Chicago School Mathematics Project
(UCSMP).

A framework was developed to distinguish the characteristics in the treatment of
geometric transformations and to determine the potential opportunity to learn
transformation concepts as measured by textbook physical characteristics, lesson
narratives, and analysis of student exercises with level of cognitive demand. Results
indicated no consistency found in order, frequency, or location of transformation topics
within textbooks by publisher or grade level.

The structure of transformation lessons in three series (Prentice Hall, Glencoe,
and UCSMP) was similar, with transformation lesson content at a simplified level and
student low level of cognitive demand in transformation tasks. The types of exercises
found predominately focused on students applying content studied in the narrative of
lessons. The typical problems and issues experienced by students when working with
transformations, as identified in the literature, received little support or attention in the

lessons. The types of tasks that seem to embody the ideals in the process standards, such

Xii



as working a problem backwards, were found on few occurrences across all textbooks
examined. The level of cognitive demand required for student exercises predominately
occurred in the Lower-Level, and Lower-Middle categories.

Research indicates approximately the last fourth of textbook pages are not likely
to be studied during a school year; hence topics located in the final fourth of textbook
pages might not provide students the opportunity to experience geometric transformations
in that year. This was found to be the case in some of the textbooks examined, therefore
students might not have the opportunity to study geometric transformations during some
middle grades, as was the case for the Glencoe (6, 7), and the UCSMP (6) textbooks, or
possibly during their entire middle grades career as was found with the Prentice Hall (6,

7, Prealgebra) textbook series.
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Chapter 1: Introduction and Rationale for the Study

The branch of mathematics that has the closest relationship to the world around
us, as well as the space in which we live is geometry (Clements & Samara, 2007; Leitzel,
1991; National Council of Teachers of Mathematics (NCTM), 1989). Furthermore,
geometry is a vehicle by which we develop an understanding of space that is necessary
for comprehending, interpreting, and appreciating our inherently geometric world
(NCTM, 1989). Spatial geometry provides us with the knowledge to understand (Leitzel,
1991) and interpret our physical environment (Clements, 1998; NCTM, 1992); this
knowledge provides us with intellectual instruments to sort, classify, draw (NCTM,
1992), use measurements, read maps, plan routes (NCTM, 2000), create works of art
(Clements, Battista, Sarama & Swaminathan, 1997; NCTM, 2000), design plans, and
build models (NCTM, 1992). Spatial geometry also provides us with the knowledge
necessary for engineering (NCTM, 2000) and building (Clements, Battista, Sarama &
Swaminathan, 1997), in addition to the aptitude to develop logical thinking abilities,
creatively solve problems (NCTM, 1992), and design advanced technological settings
and computer animations (Clements et al, 1997; Yates, 1988). Additionally, spatial
geometry helps us understand and strengthen other areas of mathematics as well as
provides us with the tools necessary for the study of other subjects (Boulter & Kirby,
1994).

Spatial geometry includes the contemporary study of form, shape, size, pattern,

and design. Spatial reasoning concentrates on the mental representation and manipulation
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of spatial objects. Geometry is described by Clements and Battista (1992) and Usiskin
(1987) as having four conceptual aspects. The first conceptual aspect is visualization,
depiction, and construction; this conception focuses on visualization, sequence of
patterns, and physical drawings. The second aspect is the study of the physical situations
presented in the real world that direct the learner to geometric concepts, as a carpenter
squaring a framing wall with the use of the Pythagorean Theorem. The third aspect
provides representations for the non-physical or non-visual, as with the use of the number
line to represent real numbers. The fourth aspect is a representation of the mathematical
system with its logical organization, justifications, and proofs. The first three conceptual
aspects of geometry necessitate the use of spatial sense, which can be learned and
reinforced during the study of geometric transformations.

The study of transformations supports the interpretation and description of our
physical environment as well as provides us with a valuable tool in problem solving in
many areas of mathematics and in real world situations (NCTM, 2000). The study of
geometric transformations begins with the student’s journey into the understanding of
visualization, mental manipulation, and spatial orientation with regard to figures and
objects. Through the study of transformations, Clements and Battista (1992) and Leitzel
(1991) assert that students develop spatial visualization and the ability to mentally
transform two dimensional images. Two dimensional transformations are an important
topic for all students to study and the recommendation is that all middle grades students
study transformations (NCTM, 1989, 2000, 2006).

The study of geometry with transformations has enhanced geometry to a dynamic

level by providing the student with a powerful problem-solving tool (NCTM, 1989).



Spatial reasoning and spatial visualization through transformations help us build and
manipulate mental representations of two dimensional objects (NCTM, 2000). Students
need to investigate shapes, including their components, attributes, and transformations.
Additionally, students need to have the opportunity to engage in systematic explorations
with two dimensional figures including representations of their physical motion
(Clements, Battista, Sarama, & Swaminathan, 1997). Geometric transformations, for
middle school students, are composed of five basic concepts: translations (slides),
reflections (flips or mirror images), rotations (turns), dilations (size changes), and the
composite transformation of two or more of the first three (Wesslen & Fernandez, 2005).

Transformation concepts provide background knowledge to develop new
perspectives in visualization skills to illuminate the concepts of congruence and similarity
in the development of spatial sense (NCTM, 1989). Spatial reasoning, including spatial
orientation and spatial visualization, is an aptitude that directly relates to an individual’s
mathematical ability (Brown & Wheatley, 1989; Clements & Sarama, 2007). It also
directly influences success in subsequent geometry coursework and general mathematics
achievement, which, in turn, directly affects the student’s future career options (Ma &
Wilkins, 2007; NCTM, 1989).

Research suggests that students should have a functioning knowledge of
geometric transformations by the end of eighth grade in order to be successful in higher
level mathematics studies (Carraher & Schlieman, 2007; Flanders, 1987; Ina-WilKins,
2007; Ladson-Billings, 1998; Knuth, Stephens, McNeil, & Alibali, 2006; National
Assessment of Educational Progress (NAEP), 2004; NCTM, 2000; National Research

Council (NRC), 1998). However, the academic performance of United States students in
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geometry, and more specifically in spatial reasoning, is particularly low (Battista, 2007;
Silver, 1998; Sowder, Wearne, Martin, & Strutchens, 2004).

Because of long standing concerns about student achievement, recommendations
by major national mathematics and professional educational organizations, such as the
NCTM, the National Commission on Excellence in Education, and the NRC, call for
essential alterations in school mathematics curricula, instruction, teaching, and
assessment (NCTM, 1989, 1991, 1992, 1995, 2000, 2006; NRC, 1998). In particular, the
NCTM published three milestone documents which developed mathematics curriculum
standards for grades K - 12 that focused on school mathematics reform. The Curriculum
and Evaluations Standards (NCTM, 1989) includes a vision for the teaching and learning
of school mathematics, including a vision of mathematical literacy. This document also
includes recommendations for the study of transformations of geometric figures to
enhance the development of spatial sense for all students. The document’s
recommendations suggest that students should have an opportunity to study two
dimensional figures through visualization and exploration of transformations.

NCTM revised and updated the Standards with its publication of the Principles
and Standards for School Mathematics (PSSM) (NCTM, 2000). This document extends
the previous recommendations by providing clarification and elaboration on the curricula
described, as well as specifically identifying expectations for each grade band: preK-2, 3-
5, 6-8 and 9-12. PSSM offers specific content guidelines for all students, and examples
for teaching, as well as specific principles and features to assist students in attaining high
quality mathematics understanding. The expectations for students are delineated in each

of the mathematical strands. For example, in the PK - 2 grade band, PSSM recommends
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that students should be able to recognize symmetry and geometric transformations of
figures with the use of manipulatives; in grades 3-5, students should be able to predict
and describe the results of geometric transformations and recognize line and rotational
symmetry. In the 6 - 8 grade band, PSSM recommends that students should apply
transformations; describe size, positions and orientations of geometric shapes under
slides, flips, turns, and scaling; identify the center of rotation and line of symmetry; and
examine similarity and congruence of these figures.

The Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics:
A Quest for Coherence (Focal Points) (NCTM, 2006) further extended the recommended
standards and delineated a coherent progression of concepts and expectations for students
with descriptions of the most significant content for curriculum focus within each grade
level from pre-kindergarten through grade eight. Focal Points extends the mathematics
ideals set forth in the PSSM by targeting curriculum content and by providing resources
that support the development of a coherent curriculum (Fennell, 2006). The Focal Points
document reinforces the need for students to discuss their thinking, to use multiple
representations that bring out mathematical connections, and to use problem solving in
the process of learning.

Of these milestone documents, PSSM (2000) offers the most specific and
delineated recommendations for school mathematics content. Sufficient time has passed
since the publication of PSSM to expect to observe substantial alignment to the
recommended content in published textbooks. The NCTM (1989) stated that they
expected the standards to be reflected in textbook content and that the standards should

also be used as criteria for analyzing textbook content.
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The PSSM (NCTM, 2000) can only be put into practice when its
recommendations can be implemented. Hiebert and Grouws (2007) emphasize that the
most important factor in student achievement is opportunity to learn, and one criterion
for student opportunity to learn is the expectation that the prescribed curriculum
standards be reflected within textbook contents (NCTM, 1989). The textbook is an
influential factor on student learning (Begle, 1973; Grouws et al., 2004; Schmidt et al.,
2001; Valverde et al., 2002), and it represents a variable that can be easily manipulated.
On Evaluating Curricular Effectiveness: Judging the Quality of K-12 Mathematics
Evaluations (National Research Council, 2004) suggests that curriculum evaluation
should begin with content analyses. Confrey (2006) affirms that content analysis is a
critical element in the link between standards and the effectiveness of the curriculum.
Textbook content analysis typically focuses on specific characteristics of the textbooks’
content. Of the various characteristics analyzed, opportunity to learn and levels of
cognitive demand are frequently used as measurements of the potential effectiveness of
the reviewed materials. Both the characteristics, opportunity to learn, and levels of
cognitive demand, are discussed in the next section.

Opportunity to Learn and Levels of Cognitive Demand

Tornroos (2005) describes the intended curriculum as the goals and objectives
that are set down in curriculum documents; the curriculum documents most frequently
used in the classroom are textbooks. An important contributing factor in learning
outcomes is the opportunity to learn (OTL) based on textbook content (Tornroos, 2005).
Tornroos found a high correlation between an item level analysis and student

performance on the Third International Mathematics and Science Study (1999) and



suggested that content analysis of textbooks would be valuable when looking for
justification for different student achievement in mathematics.

Schmidt (2002) suggested that differences in student opportunity to learn did not
suddenly appear in the eighth grade level, but rather in earlier grades, and that differences
in curriculum diversity, to a large degree, cost student achievement exceedingly. Tarr,
Reys, Barker, and Billstein (2006) report that it is crucial to identify and select textbooks
that present critical features of mathematics that support student learning and assist
teachers in helping students to learn. Tarr et al. describe the critical features of providing
support, focus, and direction in the mathematics textbook and they call for the analysis of
content emphasis within a textbook and across the span of textbooks within a series.

Opportunity to learn can be studied in various ways as indicated above, and OTL
can have a variety of meanings. Although Tornroos and Schmidt considered the
relationship of OTL to test performance, Floden (2002) determined the opportunity to
learn by the emphasis a topic receives in the written materials in the form of textbooks
since they are the form used by the student. This study takes a somewhat broader view
and considers opportunity to learn not only by the amount of emphasis a mathematical
concept receives in student textbooks but also by the nature of lesson presentations, types
of tasks presented for student activity, and the level of cognitive demand required by
students to complete tasks.

The NCTM set forth ideals for mathematics with recommendations for the
teaching and learning of worthwhile tasks, including expectations that students will
develop problem solving skills and critical thinking abilities. The PSSM (NCTM, 2000)

document describes the necessity for learning mathematics content through meaningful



activities that focus on the Process Standards: problem solving, reasoning and proof,
communications, connections, and representations.
The mathematical tasks that students experience are central to learning because
“tasks convey messages about what mathematics is and what doing mathematics entails”
(NCTM, 1991, p. 24). Tasks need to provide an opportunity for the student to be active
(Henningsen & Stein, 1997) and provoke thought and reasoning in complex and
meaningful ways as categorized by Stein and Smith (1998). The results reported in Stein
and Lane (1996) suggest, that in order for students to develop the capacity to think,
reason, and problem solve in mathematics, it is important to start with high-level,
cognitively complex tasks. Some of the high-level cognitive demand tasks include:
e exploring patterns (Henningsen & Stein, 1997)
e thinking and reasoning in flexible ways (Henningsen & Stein, 1997,
Silver & Stein, 1996)
e communicating and explaining mathematical ideas (Henningsen &
Stein, 1997; Silver & Stein, 1996)
e conjecturing, generalizing, and justifying strategies while making
conclusions (Henningsen & Stein, 1997, Silver & Stein, 1996)
e interpreting and framing mathematical problems (Silver & Stein,
1996)
e making connections to construct and develop understanding (Silver &
Stein, 1996; Stein & Smith 1998).
A major finding of Stein and Lane (1996) and Smith and Stein (1998) was that the

largest learning gains on mathematics assessments were from students who were engaged
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in tasks with high levels of cognitive demand. Thus, the key to improving the
performance of students was to engage them in more cognitively demanding activities
(Boston & Smith, 2009) and hence provide the foundation for mathematical learning
(Henningsen & Stein, 1997; Stein & Smith, 1998). Different types of tasks require higher
levels of cognitive demands through active reasoning processes and the higher level
demand tasks require students to think conceptually while providing a different set of
opportunities for student cognition (Stein & Smith, 1998). Hence, students need to have
the opportunity to learn worthwhile mathematical concepts, and be immersed in their
mathematical studies with cognitively demanding tasks.

NCTM (1989) stated “let it be understood that we hold no illusions of immediate
reform” (p. 255), but they held the vision of having classroom materials, such as
textbooks, produced so that standards would be aligned and in-depth learning take place.
Yet, since the initial publication of the Standards, little has been done to analyze textbook
contents. Because students do not learn what they are not taught (Tornroos, 2005), it is
essential to examine the extent to which mathematical topics are presented in textbooks.
Clements (1998) indicates it is essential to examine the extent to which middle school
mathematics textbooks attend to the development of the concept of transformations in
available instruction and in mathematics research. If there is a barrier to students in
“opportunity to learn” which prevents them from attaining the full benefits from the
Standards, educators need to address what can be done to eliminate the barriers; one way
to know if a problem exists due to the lack of included content is to analyze the content of
textbooks.

With the inception of this study a pilot investigation was enacted to analyze the



extent and treatment of geometric transformations lessons in two middle grades textbooks
to discern if sufficient differences in the curricula were present (Appendix A). The results
suggested that an analysis of a larger variety of textbooks was a worthwhile endeavor,
and hence this study was implemented.

Statement of the Problem

Research indicates that students have difficulties in understanding the concepts
and variations in performing transformations (Clements & Battista, 1998; Clements,
Battista, & Sarama, 1998; Clements & Burns, 2000; Clements, Battista, Sarama, &
Swaminathan, 1996; Kieran, 1986; Magina & Hoyles, 1997; Mitchelmore, 1998; Olson,
Zenigami & Okzaki, 2008; Rollick, 2009; Soon, 1989). Given recommendations from the
mathematics education community about the inclusion of transformations in the middle
grades curriculum, we might expect to observe the concepts in published textbooks;
hence, there is a need to analyze contents. However, few examinations of the contents
within textbooks have been found with respect to the alignment or development of
mathematics concepts with current recommendations (Mesa, 2004), and none have been
found to focus on the analysis of presentations and opportunity to learn for the study of
geometric transformations.

Because textbooks are the prime source of curriculum materials on which the
student can depend for written instruction (Begle, 1973; Grouws et al., 2004; Schmidt et
al., 2001; Valverde et al., 2002), the nature of the treatment of these concepts needs to be
examined to insure that students are provided appropriate opportunities to learn. As a
result there emerges a need to analyze the treatment of geometric transformations in

middle school mathematics textbooks. This study examined the nature and treatment of
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geometric transformations through the analysis of published middle grades textbooks in
use in the United States. The textbooks chosen included publisher generated textbooks,
curriculum project-developed textbooks, and National Science Foundation (NSF) funded
curriculum materials; it was assumed that these textbook types would likely present the
concepts differently. The lesson concepts were analyzed in terms of content of the
narrative, examples offered for student study, number and types of student exercises, and
the level of cognitive demand expected by student exercises. Additionally, this
investigation addressed the possible changes of focus in the progression of content from
grade six through grade eight.
The Purpose of the Study

This study had three foci: 1) to analyze the characteristics and nature of geometric
transformation lessons in middle grades textbooks to determine the extent to which these
textbooks provide students the potential opportunity to learn transformations as
recommended in the curriculum standards; 2) to describe the content of geometric
transformation lessons to identify the components of those lessons, including how they
are sequenced within a series of textbooks from grades 6 through grade 8 and across
different publishers; 3) to determine if student exercises included with the transformation
lessons facilitate student achievement by the inclusion of processes that encourage
conceptual understanding with performance expectations.

Four types of middle school transformations were examined: the three rigid
transformations and their composites (translations, reflections, and rotations), where rigid
refers to the preimage figure and resulting image figure being congruent; and dilation

where figures are either enlarged or shrunk. The sections of student exercises that follow
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the lesson presentations were investigated for the level of cognitive demand required for
completion because problems of higher levels of cognitive demand increase students’
conceptual understanding (Boston & Smith, 2009; Smith & Stein, 1998; Stein, Smith,
Henningsen, & Silver, 2000).
Research Questions

This study investigated the nature and treatment of geometric transformations in
student editions of middle grades mathematics textbooks in use in the United States. In
doing so, the following research questions were addressed.

1. What are the physical characteristics of the sample textbooks? Where
within the textbooks are the geometric transformation lessons located, and
to what extent are the transformation topics presented in mathematics
student textbooks from sixth grade through eighth grade, within a
published textbook series, and across different publishers?

2. What is the nature of the lessons on geometric transformation concepts in
student mathematics textbooks from sixth grade through eighth grade,
within a published textbook series?

3. To what extent do the geometric transformation lessons’ student exercises
incorporate the learning expectation in textbooks from sixth grade through
eighth grade within a published textbook series, and across textbooks from
different publishers?

4. What level of cognitive demand is expected by student exercises and
activities related to geometric transformation topics in middle grades

textbooks? The level of cognitive demand is identified using the
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parameters and framework established by Stein, Smith, Henningsen, and
Silver (2000).

Together, the answers to these four questions give insight into potential opportunity to
learn that students have to study geometric transformations in the middle grades
textbooks.
Significance of the Study

The mathematics curriculum in the United States has been defined as being in
need of vast improvement (Dorsey, Halvorsen, & McCrone, 2008; Grouws & Smith,
2000; Kilpatrick, 1992, 2003; Kilpatrick, Swafford, & Findell, 2001; Kulm, Morris, &
Grier, 1999; McKnight, Crosswhite, Dossey, Kifer, Swafford, Travers, & Cooney, 1987;
National Center for Education Statistics (NCES), 2001, 2004; National Commission on
Mathematics and Science Teaching for the 21% Century, 2000; NCTM, 1980, 1989, 2000;
NRC, 2001, 2004; Schmidt, McKnight, & Raizen, 1996; U. S. Department of Education,
1996, 1997, 2000) and professional organizations have recommended changes (National
Commission on Mathematics and Science Teaching for the 21 Century, 2000; NCTM,
1980, 1989, 2000; NRC, 2001; 2004; U. S. Department of Education, 1996, 1997, 2000).
Three of the most influential documents since the late 1980s were published by the
NCTM (1989, 2000, 2006) and these documents set forth recommendations for the
teaching and learning of worthwhile mathematical tasks in which students are expected to
think critically.

Analysis of literature from both national (AAAS, 1999a; Braswell, Lutkus, Grigg,
Santapau, Tay-Lim, & Johnson, 2001; Carpenter, Corbitt, Kepner, Lindquist, & Reys,

1981; Dorsey, Halvorsen, & McCrone, 2008; Fey & Graeber, 2003; Flanders, 1994b;
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Kouba, 1988; NCES, 2000, 2001b, 2004, 2005; U. S. Department of Education, 1999,
2000) and international (Adams, Tung, Warfield, Knaub, Mudavanhu, & Yong, 2000;
Ginsburg, Cook, Leinward, Noell, & Pollock, 2005; Husen, 1967; McKnight, Crosswhite,
Dossey, Kifer, Swafford, Travers, & Cooney, 1987; NAEP, 1998; NCES,2001a;
Robitaille & Travers, 1992; U. S. Department of Education, 1998) reports indicate that
achievement of U. S. students lags behind those of other countries; one specific area is
spatial reasoning which is the foundation for understanding our three-dimensional world.
Spatial reasoning, taught through transformations, has been neglected as an area for study
by students in the middle grades (AAAS, 1999b; Beaton, Mullis, Martin, Gonzalez,
Kelly, & Smith, 1996; Clements & Battista, 1992; Clements & Sarama, 2007; Clopton,
McKeown, McKeown, & Clopton, 1999; Gonzales, 2000; McKnight, Travers,
Crosswhite, & Swafford, 1985; Sowder, Wearne, Martin, & Strutchens, 2004) and has
been recognized as a mathematical topic in need of development within the world of
learning (Battista, 2001a, 2007; 2009; Clements & Battista, 1992; Hoffer, 1981).

Many educators report that textbooks are common elements in mathematics
classrooms and that textbook content influences instructional decisions on a daily basis
(Brasurell et al., 2001, Grouws & Smith, 2000; NRC, 2004; Weiss, Banilower,
McMahon, & Smith, 2001). Because approximately three fourths of textbook content is
typically covered each year in middle school mathematics classrooms (Weiss et al.,
2001), the textbook directly affects students’ opportunity to learn. Because the textbook
is an influential factor on student learning (Begle, 1973; Grouws, Smith & Sztajn, 2004;
Schmidt et al., 2001; Valverde et al., 2002), it becomes important to document the

opportunities presented in textbooks for students to gain competency in important
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mathematical concepts beyond the level of procedural skills. If the content is not present
in the textbook, or placed where it is easily omitted, then students most likely will not
learn it.
School mathematics curriculum is generally delivered by use of the textbook in
the classroom (Herbel-Eisenmann, 2007; Jones, 2004; Jones & Tarr, 2008; Lee, 2006;
Pehkonen, 2004; Tarr, Reys, Barker, & Billstein, 2006). Clements, Battista, and Sarama
(2001) and Battista (2009) state geometric topics in middle school textbooks tend to be a
jumble of unrelated topics without a focus on concept development or problem solving.
The insufficient development of spatial sense prior to the study of formal geometry in
high school places students at a disadvantage for achievement and success in future
mathematics courses (Clements, 1998). Flanders (1994a) and Tarr, Chavez, Reys and
Reys (2006) indicate that textbooks in grades K-8 tend to be uniform in giving arithmetic
topics preferential treatment over geometry, and that the topics in geometry are the least
covered and are usually found at the end of the textbooks. Topics that appear near the end
in textbooks can easily be eliminated from the material that is covered by the teacher in
the classroom to conserve time for various other mandatory curriculum requirements.
Conceptual Issues and Definitions
Composite Transformation - A complex transformation achieved by composing a
sequence of two or more rigid transformations to a figure (http://www.cs.
bham.ac.uk). The transformations that are combined in composite transformations
are translations, reflections, and rotations. Any two rigid transformations can be
combined to form a composite transformation, and the resulting image can be

redefined as one of the original transformations (Wesslen & Fernandez, 2005).
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Congruent Figures - Two dimensional figures are congruent when they are the same
shape and size; all points coincide when one figure is superimposed over the
other.

Curriculum - Herein is defined as the written (textbook) curriculum. The curriculum is
described as the vehicle by which the course content is dispersed. The written
materials are designed to include all of the components of the course curriculum
and contain the course topics, both scope and sequence.

Dilation - Dilation is a transformation that either reduces or enlarges a figure. Dilation
stretches or shrinks the original figure and alters the size of the preimage; hence,
it is not rigid because it does not satisfy the condition that the image is congruent
to the preimage. Dilation is a similarity transformation in which a two-
dimensional figure is reduced or enlarged using a scale factor (# 0), without
altering the center of dilation.

Glide Reflection - A glide reflection is a reflection followed by a translation along the
direction of the line of reflection. In order to perform a glide transformation,
information about the line of reflection and the distance of the translation is
needed; in the glide all points of the preimage figure are affected by the
movement (Wesslen & Fernandez, 2005).

Image - The name given to the figure resulting from performing a transformation is called
an image. The letters marking the image points are the same letters as used on the
preimage but often marked with a prime symbol (').

Line of Symmetry - A line that can be drawn through a figure on a plane so that the

figure on one side of the line is the mirror image of the figure on the opposite
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side.

Middle Grades / Middle School - for this study consists of grades 6, 7, and 8.

Mira® - A geometric manipulative device that has reflective and transparent qualities is a
Mira®.

Opportunity to Learn - For the purpose of this study, opportunity to learn is defined as
how a concept is addressed in the curriculum, including the amount of emphasis a
mathematical concept receives in the written curricula, the nature of the
presentations, the types of tasks that are presented for student study, and the level
of cognitive demand required by students to complete provided tasks.

Preimage - The name given to the original figure to which a transformation is applied is
called a preimage. The original figure is called the preimage, and the resulting
figure, after a transformation is applied, is called the image. The preimage
figure’s points, or vertices, are usually labeled with letters.

Reflection - A type of rigid transformation where the figure appears to be flipped over an
axis or line on a plane is called a reflection; the line may be the x- or y-axis, or a
line other than one of the axes. This line is called the line of reflection. The object
and its reflection are congruent but the position and alignment of the figures is
reversed. A mental picture of the reflection motion would be described as lifting
the shape out of its plane and flipping it over an indicated line and then putting it
back down on the plane. When a reflection figure is viewed in a mirror, the mirror
edge becomes the line of reflection, or the line over which the preimage is
reflected. The terms “flip or flipping” are often used to describe this type of

transformation.
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Rigid Transformation - A transformation whereby the pre-image figure and the resulting
image are congruent is called a rigid transformation. Three types of
transformations are rigid motion transformations - translations (slides), reflections
(flips), and rotations (turns) - because the original figure is not distorted in the
process of being transformed (Yanik & Flores, 2009).

Rotation - A rotation is a type of rigid transformation where a two-dimensional figure is
turned a specified angle and direction about a fixed point called the center of
rotation. A rotation is also called turn. The rotation turns the figure and all of the
points on the figure through a specific angle measurement where the vertex of the
angle is called the center of rotation. For a description of rotation, two pieces of
information are needed: the center and angle of rotation, and the direction of the
rotation; the center of rotation is the only point that is not affected by the rotation
(Wesslen & Fernandez, 2005).

Scale Factor - The size change of the figure in dilation is called the scale factor. The
change in size of the length of a side of the image to the corresponding side length
on the preimage is given by a comparison of the size of the image over the size of
the preimage; this is represented as a ratio which represents the scale factor for the
dilation. For example, a preimage of 3 (units), and an image of 12 (units), would
be written as 12 over 3 in simplest form, i.e. 12/3 = 4/1, hence the scale factor is
4. The scale factor is always expressed with the image units first, or in the
numerator of the fraction. If the scale factor is between zero and one, the dilation
is a reduction; if the scale factor is greater than one the dilation is an enlargement.

If the scale factor is 1, the preimage and the image are the same size.

18



Similar Figures - Two polygons are similar if the measures of their corresponding sides
are proportional and their corresponding angle measures are congruent. The result
of a dilation transformation produces similar figures.

Size Change - Size Change is another term for dilation of a figure.

Student Performance Expectations - Performance Expectations are defined as the type of
responses elicited by the work required in the tasks, activities, and exercises
presented for student experience.

Symmetry - Symmetry is the correspondence in size, form, and arrangement of parts of a
figure on opposite sides of a line. In rigid motion transformations, congruent
(symmetric) figures are produced, hence there is symmetry in the pair of figures
constructed by translations, reflections, and rotations. A pattern is said to be
symmetric if it has at least one line of symmetry. In symmetric figures, the angle
measures, sizes, and shapes of the figures are preserved (http://www.math.
csush.edu). A figure is said to have rotational symmetry if the figure can be
rotated less than 360 degrees about its center point and the resulting figure is
congruent to the preimage.

Transformation - The process by which a two-dimensional figure is moved on a plane by
mapping the preimage set of points to a second set of points called the image. A
transformation involves a physical or mental manipulation of a figure to a new
position or orientation on a plane (Boulter & Kirby, 1994).

Translation - A geometric translation consists of moving a point, line, or figure to a new
position on a two dimensional surface. The definition of translation specifies that

each point of the object is moved the same distance and in the same direction.
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Usiskin et al. (2003, p. 302) calls a geometric translation “the sliding of an object
from one to another place without changing its orientation.” The simplest of the
transformations is the translation, sometimes called a slide, or a shift. The
symbolism for a point translation may be labeled as A — A’. The arrow indicates
that the point A is being moved to a new position labeled A prime (A’). An arrow
may be illustrated on a graph to indicate the direction for movement of the object,
and the shaft of the arrow indicates the intended distance of the movement.

Two-dimensional - A term used to represent figures in which only the length and width
are measured on a plane, there is no thickness.

Vector - An arrow symbol representing the distance and direction for the translation of a
figure is called a vector. The arrow symbol, when illustrated on the graph, is
called a “translation vector” because it shows the direction and magnitude of the
translation. The direction and distance that the preimage is to be moved can also
be represented by an ordered pair, (X, xy), where the £x represents the amount of
movement right or left along the x-axis, and the +y represents the amount of
movement up or down along the y-axis of a coordinate graph. The intended
movement values are relative to the original position of the point or object, not to

the origin.

20



Chapter 2: Literature Review

The purpose of this literature review is to present relevant findings and
investigations to establish the foundation on which this study was developed, as well as
delineate the concepts and content on which the conceptual framework for analysis was
constructed. This review is divided into three major sections. The first presents discussion
on different types of curriculum, the influence that textbooks bring to bear on
determining classroom curriculum, as well as criticisms of the curriculum and the need
for content analysis. The second section reviews findings from existing content analysis
studies, and identifies foci of content analysis studies. The third section presents findings
on the issues raised in research relating to misconceptions and difficulties that students
experience with learning geometric transformation concepts to determine the areas and
specific concepts that should be delineated for investigation.

Literature selection. Articles, research reports and studies, dissertations, and
conference reports were located using Dissertation Abstracts International, Education
Full Text, Education Resources Information Center (ERIC), Google Search, JSTOR
Education, and H. W. Wilson Omnifile, as well as University Library services. An
exploration of related research was conducted starting with appropriate chapters from the
National Council of Teachers of Mathematics (NCTM) Handbook of Research on
Mathematics Teaching and Learning (1992), Second Handbook of Research on
Mathematics Teaching and Learning (2007), NCTM Standards documents (1989, 2000,

2006), the NCTM’s journals, including the Journal for Research in Mathematics
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Education and Mathematics Teaching in the Middle School, and the NCTM Yearbooks
(1971, 1987, 1995, 2009) that focused specifically on geometry. The reference lists in
the documents provided additional resources for locating related studies and publications
from additional educational sources.

The Curriculum and the Textbook

This section of the literature review presents discussion on different types of
curriculum, textbook use in the classroom, and the influence that textbooks have on
course content. The information presented here further illustrates the need for content
analysis.

Types of curriculum. Many educators have written about different types of
curriculum and the specific characteristics that delineate each (Jones, 2004; Klein, Tye, &
Wright, 1979; Porter, 2002, 2006; Reys, Reys, Lapan, Holliday, & Wasman, 2003; Stein,
Remillard, & Smith, 2007; Usiskin, 1999; Valverde, Bianchi, Wolfe, Schmidt, &
Houang, 2002; Venezky, 1992). In general, the term curriculum has different meanings
specific to the context in which it is used (Stein, Remillard, & Smith, 2007).

Stein, Remillard, and Smith (2007) used the terms curriculum materials and
textbooks interchangeably, and called this type of curriculum “formal”, “institutional”, or
“intended”. Usiskin (1999) and Klein et al. (1979) also used the term “formal” while
Jones (2004) labeled this type of curriculum “prescribed”, as did Porter (2006); however,
Porter used the term “intended” synonymously for this curriculum. The enacted
curriculum refers to how the written curriculum is delivered in the classroom (Porter,
2004, 2006; Stein, Remillard, Smith, 2007), the assessed curriculum is the content being

tested (Porter, 2004, 2006; Jones, 2004), and the attained or received curriculum is the
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knowledge obtained by the student (Jones, 2004; Venezky, 1992).

The textbook with instructional resources and guides prepared for use by students
and teachers is the vehicle by which the written curriculum of a course is dispersed. The
written materials are designed to include all of the components of the course and contain
the course topics, both scope and sequence. Because the student normally has direct
access to the mathematics textbook, it is the student textbook that represents the written
curriculum in the classroom. Thus, it is important to reflect on the role of the textbook
because the textbook represents the scope and sequence of concepts as they are generally
presented to students.

In summary, the term curriculum can have different meanings depending on the
focus and topic being discussed, examined, or investigated. The textbook serves as the
obvious link between the content prescribed for a course and the scope and sequence of
what is actually taught in the classroom (i.e., “enacted curriculum”).

The mathematics textbook and the curriculum. Senk and Thompson (2003)
offer a detailed observation of mathematics in the nineteenth century, and explain that
textbooks were structured so that topics were typically introduced by stating a rule,
showing an example and then offering numerous exercises for student practice.
Commercially published textbooks were primarily used as instructional guides
(Clements, 2007; Richaudeau, 1979; Senk & Thompson, 2003). Throughout the 20"
century and even into the first part of the 21% century, the most prevalent type of textbook
presentation was still the style offering exposition, examples, and exercises (Kang &
Kilpatrick, 1992; Love & Pimm, 1996; Valverde, Bianchi, Wolfe, Schmidt, & Houang,

2002), hence the present type of textbook lesson presentation and relevant emphasis

23



placed on specific mathematics topics needs to be examined to determine the alignment
with the Standards recommendations.

Educators suggest that the textbook has a marked influence on what is taught and
presented in the classroom (Begle, 1973; Driscoll, 1980; Haggarty, & Pepin, 2002:
Porter, 1989; Reys, Reys, Lapan, Holliday, & Wasman 2003; Robitalle & Travers, 1992;
Schmidt, McKnight, & Raizen, 1997; Schmidt et al., 2001; Schmidt, 2002; Tornroos,
2005). Students typically do not learn what is not in the textbook (Begle, 1973; Jones,
2004; Porter, 1995; Reys, Reys, & Lapan, 2003; Schmidt, 2002) and teachers are unlikely
to present material that is not there (Reys, Reys, & Lapan, 2003). Begle (1973) noted that
the textbook is a powerful influence on learning so that learning seems to be directed by
the textbook rather than by the teacher. Haggarty and Pepin (2002), on their evaluation of
learners, indicate that presentation of different mathematics offers students different
opportunities to learn prescribed mathematics. Similarly, Lenoir (1991, 1992) and
Pellerin and Lenoir (1995) indicate that the textbook exerts a large degree of control over
the curriculum and teaching practices in general. Therefore textbook content analyses are
needed.

The textbook continues to be a determining factor in the curriculum in many
mathematics classrooms in this nation, particularly at the elementary and middle school
levels (Howson, 1995; Venezky, 1992; Woodward, Elliott, & Nagel, 1988). Teachers rely
heavily on the textbook for curriculum design, scope, and sequence (Stein, Remillard,
and Smith, 2007) as well as for guidance on pedagogical issues. Thus, the textbook is the
most common channel through which teachers are exposed to the communications from

professional organizations in reference to mathematics standards and to recommendations
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from the research community (Collopy, 2003); both standards and recommendations
translate into immediate determinants for teaching practices (Ginsbury, Klein, & Starkey,
1998). Grouws and Smith (2000), Peak (1996), and Tarr, Reys, Barker, and Billstein
(2006) report that throughout mathematics classrooms in the United States, the textbook
holds a prominent position and represents the expression of the implicit curriculum
requirements.

These various educators suggest that the mathematics textbook is regarded as the
authoritative voice that directs the specified mathematics curriculum content in the
classroom (Haggarty & Pepin, 2002; Olson, 1989). The influence that the textbook
maintains is related to most of the teaching and learning activities that take place in the
mathematics classroom (Howson, 1995).

The textbook and its use in the classroom. Although professional organizations
(NCTM, 1989, 2000), individual states, and local educational governing departments
have designed frameworks to guide mathematics curriculum, the development of the
structure and content of the written curriculum in publisher generated textbooks is done
by textbook authors and publishing staff. However, because “publishers attempt to meet
the criteria of all such frameworks, including scope and sequence requirements, the
educational vision of any one state framework is, at best, diluted” (Clements, 2008, p.
599). The effect is often poor performance by students (Ginsburg, Cook, Leinwand,
Noell, & Pollock, 2005; Kouba, 1988; McKnight et al., 1987; McKnight, Travers,
Crosswhite, & Swafford, 1985; Mullis et al., 1997) and a U. S. school mathematics
curriculum that is labeled a “mile wide, inch deep” (NCES, 1996; Schmidt et al., 1997,

p122). The problem with the written curriculum exists in
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the large quantity of topics presented (Clements & Battista, 1992; Ginsburg,
Cook, Leinward, Anstrom, & Pollock, 2005; Jones, 2004; Porter, 1989; Snider,
2004; Valverde et al., 2002),

the lack of depth of study for specific topics (Jones, 2004; McKnight et al., 1987;
Schmidt, McKnight, & Raizem, 1997; Snider, 2004; Tarr, Reys, Barker, &
Billstein, 2006; Valverde et al., 2002),

the superficial nature of the material presented (Fuys, Geddes, & Tischler, 1988;
Schmidt, McKnight, & Raizem, 1997; Schmidt et al., 1997; Tarr, Reys, Barker, &
Billstein, 2006),

the highly repetitive nature of topics appearing year after year (Flanders, 1987;
McKnight et al., 1987; Schmidt, McKnight, & Raizem, 1996; Senk & Thompson,
2003; Snider, 2004; Tarr, Reys, Barker, & Billstein, 2006; Usiskin, 1987),

the number of breaks between mathematics topics (Valverde et al., 2002),

the fragmentation of mathematical topics (Flanders, 1994; Herbst, 1995;
McKnight, Crosswhite, Dossey, Keffer, Swafford, Travers, & Cooney, 1987; U.
S. Dept. of Ed., 1996, 1997, 1998),

the contextual features and problem performance requirements (Herbst, 1995; Li,
1999, 2000; Schmidt et al., 1996; Schutter & Spreckelmeyer, 1959; Stevenson &
Bartsch, 1992),

the low level of expectations for student performance (McKnight, Crosswhite,
Dossey, Keffer, Swafford, Travers, & Cooney, 1987; Snider, 2004),

the low level of cognitive demand for student performance (Fuys, Geddes, &

Tischler, 1988: Jones, 2004; Li, 2000; Smith & Stein, 1998, Stein & Smith, 1998;
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Senk & Thompson, 2003),

e the placement as well as the amount of new material, enrichment activities, and

the inclusion of the use of technology and manipulatives (Clements, 2000;

Flanders, 1987, 1994; Jones, 2004).

The above provides a partial list of studies that have investigated different aspects of the
written curriculum. Any or all of these issues with curriculum might be analyzed related
to content analysis.

Dissatisfaction with textbooks in the United States has been reported by many
educators (Ball, 1993; Flanders, 1987; Jones, 2004; Heaton, 1992; Ma, 1999; Schifter,
1996). Project 2061, by the American Association for the Advancement of Science
(AAAS), and the U. S. Department of Education found that commercially published
textbooks were “unacceptable” with regard to content emphasis (p. 1), and that the
textbooks provided little sophistication in the presentation of mathematical topics from
grade six to grade eight. Inconsistency and weak coverage of mathematical concepts were
found in most of the textbooks examined (AAAS, 2000). Valverde et al. (2002) voiced
their concern that, with the composition of presently published U. S. textbooks and the
classroom time available, the student is severely limited in the number of concepts that
would be experienced and the level of importance that the topics receive.

Yet, simultaneously, reports indicate that mathematics textbooks are frequently
used in classrooms for teaching practices and student activities. From the 2000 national
survey of the National Assessment of Educational Progress, researchers found that more
than 90% of teachers in grades 5-8 use commercially published textbooks in their

classrooms, and more than 60% of the classrooms use a single textbook during the school
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year. A large number of 8th grade teachers reported using the textbook “almost every
day” (p. 133). More than 95% of teachers reported that they use the textbook more than
half of the classroom teaching time, and 60% of the teachers reported using the textbook
as the main source for lesson presentations and student exercises (Grouws & Smith,
2000).

Similarly, approximately 75% of eighth grade students worked from their
textbooks on a daily basis (Braswell et al., 2001; Grouws & Smith, 2000). More than
90% of students reported doing mathematics problems from their textbooks during
almost every class (Linquist, 1997; Tarr, Reys, Barker, & Billstein, 2006). Collectively,
these reports suggest that the textbook has come to represent the formal curriculum, and
that the textbook determines and dominates what goes on in the classroom (Hummel,
1988) as well as what students have an opportunity to learn (Down, 1988). Hence,
because the textbook is used to determine classroom curriculum it is important to analyze
the content of textbooks used.

Curriculum analysis. The curriculum was not recognized as an entity to be
developed until the 1950s (Howson, Keitel, & Kilpatrick, 1981; Kilpatrick, 2003) and
little attention was given to the design or quality of textbooks prior to the 1970s (Senk &
Thompson, 2003; Woodward, Elliott, & Nagel, 1988). So the need for specific formal
content analysis did not arise until after the products of the curriculum development
projects of the 1970s and 1980s were completed. Kilpatrick (2003) states “the job of
curriculum analyzer, like the job of the curriculum developer, is a 20th century
invention” (p. 182). Hence, the study of mathematics textbook content analysis has only

appeared in the literature during, approximately, the last 30 to 40 years.
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Many questions about the characteristics and influences of the textbook still
remain to be answered (Chappell, 2003), such as: “to what extent are these curricula
similar to or different from each other?” (p. 285) and to what extent are different series
different from one another? Reys, Reys, Lapan, Holliday, and Wasman (2003) suggest
that “different types of curriculum materials tend to focus on different priorities” (p. 77).
Chappell (2003), in summarizing the research on middle school programs developed in
the 1990s, states “differences among the three middle school curricula are apparent in
their structure and design” (p. 297). Yet, what seems to be missing in a comparison of the
reported curricula is an analysis of the contents that provide the students with the
opportunity to learn the topics that are the focus of mathematical learning.

As seen in the previous section, the textbook plays a prominent role in the
mathematics education of students in the United States. Hence, an investigation of the
content within these textbooks appears to be needed to determine the level of students’
opportunity to learn from the available mathematics presentations (Grouws & Smith,
2000; Herbst, 1995; Julkunen, Selander, & Ahlberg, 1991; Kilpatrick, 2003; Leburn,
Lenoir, Laforest, Larosse, Roy, Spallanzani, & Pearson, 2002; Peak, 1996; Venezky,
1992).

Related Textbook Content Analyses

Assessment of student achievement normally follows the teaching-learning
process. Analysis of student achievement must address multiple variables; one of these
variables is to focus on the instructional materials that are used in the educational setting
(AAAS, 2000). Textbook content analysis is certainly not new in its appearance in

publications, but on closer inspection the title “content analysis” encompasses many

29



different aspects of investigating the written materials. Various types of studies were
identified under the general category of content analysis. The general ideas gathered from
these content analyses guided the structure of this study.

The first type of content analysis literature reviewed synthesizes content analysis
studies that have focused on development of generalized instructions and directions on
how to evaluate and select textbooks for specific goals and curriculum for classroom use.
These reports offer insight into the development of a coding instrument to analyze
textbooks.

The second type of literature reviewed summarizes content analysis that
specifically evaluated textbooks in reference to coverage of mathematical content in
comparison to items on international tests, as for example, the Second International
Mathematics Study (SIMS) and Trends in Mathematics and Science Study (TIMSS).
These studies addressed students’ opportunity to learn the material addressed on
international tests in comparison to textbook presentations and student exercises.

The third type of content analysis literature reviewed focuses on the content of
mathematical topics and concepts, lesson narrative presentations, examples offered for
student study, expected student performance in presentations, and the levels of cognitive
demand needed for student engagement. This section’s reviewed literature was most
applicable to the development of the coding instrument used for this study.

Types of textbook content analyses. Textbook content analyses have focused on
many different aspects of available curriculum resources. It was the aspects identified in
these studies that provide insight into the different types of data collected. There have

been investigations on
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gender and ethnicity bias (Rivers, 1990)

page count (Flanders, 1987; Jones, 2004)

total area of lesson presentation and the weight of textbooks (Shields, 2005)
topics of mathematics covered at particular grade levels (Flanders, 1987, 1994a;
Herbel-Eisenmann, 2007; Jones, 2004; Jones & Tarr, 2007; Li, 2000; Mesa,
2004; Remillard, 1991; Stylianides, 2005, 2007; Sutherland, Winter, & Harris,
2001; Wanatabe, 2003)

repetition of topics from one year to the next (Flanders, 1987; Jones, 2004)
teacher edition content (Flanders, 1987; Stylianides, 2007; Watanabe, 2003)
teachers’ use of textbooks (Freeman & Porter, 1989; Leburn, Lenoir, Laforest,
Larosse, Roy, Spallanzani, & Pearson, 2002; Tarr, Chavez, Reys, & Reys, 2006;
Witzel & Riccomini, 2007)

comparison of international textbook series (Adams, Tung, Warfield, Knaub,
Mudavanhu, & Yong, 2001; Haggarty & Pepin, 2002; Li, 2000; Mesa, 2004;
Sutherland, Winter, & Harris, 2001)

voice of the textbook (Herbel-Eisenman, 2007)

content of textbook topics in comparison to national or international test questions
(Flanders, 1994a; Mullis, 1996; Tornroos, 2005; Valverde, Bianchi, Wolfe,
Schmidt, & Houang, 2002)

how to analyze content for textbook selection (Confrey, 2006; Kulm, 1999;
Lundin, 1987; McNeely, 1997; U. S. Department of Education, Exemplary and
Promising Mathematics Programs, 1999)

analysis of content to align or explain student achievement (Kulm, Morris, Grier,
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2000; Kulm, Roseman, & Treistman, 1999)

analysis of student exercises and performance expectations (Jones & Tarr, 2007;
Li, 2000; Tornroos, 2005)

narrative of specific content over multiple topics in mathematics (AAAS, Project
2061, 2000; Flanders, 1987; Haggarty & Pepin, 2002; Herbel-Eisenman, 2007;
Johnson, Thompson, & Senk, 2010; Jones, 2004; Jones & Tarr, 2007; Li, 2000;
Martin, Hunt, Lannin, Leonard, Marshall, & Wares, 2001; Mesa. 2004; Porter,
2002, 2004; Remillard, 1991; Rivers, 1990; Shield, 2005; Stein, Grover, &
Henningsen, 1996; Stein & Smith, 1998; Sutherland, Winter, & Harris, 2001;
Stylianides, 2005, 2007; Tarr, Reys, Barker, & Billstein, 2006, Watanabe, 2003)
evaluation of experimental and quasi-experimental designs on series and student

achievement (NRC, 2004; Senk & Thompson, 2003; What Works Clearinghouse).

These delineated studies have contributed to construction of the coding instrument for

this study in the area of physical characteristics of the textbooks, itemization of content in

student exercises, and student performance expectations. Also closely related to the

research of this dissertation were studies on the following topics:

content analysis of targeted areas of topics in mathematics (Haggarty & Pepin,
2002; Johnson, Thompson, & Senk, 2010; Jones, 2004; Jones & Tarr, 2007;
Mesa, 2004; Rivers, 1990; Soon, 1989)

textbook lesson narratives (Herbel-Eisenman, 2007; Mesa, 2004; Johnson,
Thompson, & Senk, 2010; Shield, 2005; Sutherland, Winter, & Harris, 2001)
student opportunity to learn content (Floden, 2002; Haggarty & Pepin, 2002;

Tornroos, 2005),
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e student cognitive demand (Jones, 2004; Jones & Tarr, 2007; Porter, 2006; Stein,

Grover, & Henningsen, 1996; Smith & Stein, 1998; Stein & Smith, 1998)

The preceding list delineates the types of analyses that provide the background for
the context used in this study as they address targeted content, lesson narratives,
cognitive demand required to complete student exercises, and student potential
opportunity to learn.

Curriculum content analysis for textbook selection. In 1987, the California
State Board of Education rejected the 14 textbook series that were submitted for adoption
(Flanders, 1987). In response, the California State Department of Education published a
resource entitled Secondary Textbook Review: General Mathematics, Grades Nine
through Twelve (Lundin, 1987). The purpose of this document was to assist in the
selection of textbooks that would align with curriculum standards in California. This
document is termed ““a trailblazer” (pp. iv) because it suggested new procedures and
offered an instrument for review of published textbooks. The document contains reviews

of 18 textbooks and addresses four major areas:

publisher description and information on the textbook’s intended audience
e emphasis given to each mathematical topic
e extent to which content aligns to the curriculum standards using the number of
lessons as the method of analysis
e extent and location of mathematics topics in the textbook’s instructional material
and teacher resources.
The textbook areas reviewed encompass only the textbook’s instructional pages and did
not include supplementary pages, appendices, index, etc.
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In 1997, the U. S. Department of Education published Attaining Excellence:
TIMSS as a Starting Point to Examine Curricula: Guidebook to Examine School
Curricula (McNeely). This publication extended the process of content analysis to offer
five methods for analysis that vary on the resources needed for implementation of the
procedures as well as the types of conclusions that can be drawn from the analyses. The
five methods are: 1. The TIMSS Curriculum and Textbook Analysis; 2. National Science
Foundation (NSF) Instructional Materials and Review Process; 3. California Department
of Education Instructional Resources Evaluation; 4. Council of Chief State School
Officers (CCSSO) State Curriculum Frameworks and Standards Map; and 5. American
Association for the Advancement of Science (AAAS) Project 2061 Curriculum-Analysis
Procedure. These five methods were included in the AAAS reports because the methods
employed in the evaluation process specifically tied the analysis to mathematics
standards.

The American Association for the Advancement of Science Project 2061 (2000)
designed procedures to critique published middle school mathematics curriculum
materials to assess the degree of alignment of the content to selected benchmarks and
mathematics standards. Thirteen NSF and traditional textbooks were evaluated and rated
on their core content on number concepts and skills, geometry concepts and skills, and
algebra graphing concepts and skills. The analysis procedures included four phases:

¢ identify a specific set of learning goals and benchmarks for analysis

e execute a preliminary inspection of the content of the textbooks

e perform an in-depth analysis of the curriculum materials for alignment between
the content and the benchmarks
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e summarize the findings (Kulm, 1999; Kulm, Roseman, & Treistman, 1999).
Further literature reviewed on content analyses has added to the elements
included in this research study. As for example, in 2004, the National Research Council

(NRC) identified and examined almost 700 evaluative studies on 19 mathematics
textbook series curricula from grades K-12. The value of the NRC work was in the
development of models for curricular analyses. The NRC report indicates a full
comprehensive content analysis should include identification and description of the
curriculum theory; scrutiny of program objectives; applicability to local, state or national
standards; program comprehensiveness, content accuracy; and support for diversity.

The work of the NRC (2004) was extended by Shield (2005) and Tarr, Reys,
Barker, and Billstein (2006) to focus on developing mathematics textbook analysis
strategies. Shield’s work focused on textbook concepts and presentations with alignment
to prescribed standards. The overall initial framework included four stages of evaluation
methodology that are similar to those used in Project 2061. Tarr, Reys, Barker, and
Billstein developed a general framework for reviewing and selecting mathematics
textbooks; their framework is built around three dimensions, namely instructional focus,
content emphasis, and teacher support.

Curriculum content analysis for comparison to international tests. Flanders’
(19944, 1994b), and Tornroos’ (2005) content analysis compared textbook content to the
mathematical content on international tests. The results from both studies were similar;
they found that student achievement was directly related to the mathematical content
presented in the textbook. In addition to evaluating the textbook content, Valverde et al.

(2002) evaluated the physical features which included the lesson characteristics of the
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textbooks. These studies reinforce the relationship between the need for content inclusion
as it relates to student achievement through opportunity to learn and the need for
textbook content analyses. A summary of these reports follow.

Flanders (19944, 1994b) published two investigations that examined eighth grade
textbooks from six commonly used publishers. He compared the content of middle school
textbooks with the subject matter found on the Second International Mathematics Study
(SIMS) test, a total of 180 multiple-choice test questions. Flanders’ study focused on the
coverage of content in six non-algebra textbooks, and teachers’ evaluation of student
opportunity to learn and level of student performance expectations for achievement.
Special attention was given to record topics that were classified as new, in 8" grade text
only; or reviewed, in both the 7" and 8" grade text; or not covered in either textbook. His
findings showed that the textbooks were lacking in coverage of the topics of algebra and
geometry. He found that approximately 50% of the geometry items were not covered in
the middle grades textbooks at all, and the newest curriculum topics on algebra and
geometry were presented least and latest in the sequence of the curriculum.

Similarly, Valverde, Bianchi, Wolfe, Schmidt, and Houang (2002) examined 192
textbooks from grades 4, 8, and 12 from approximately 50 educational systems that took
part in international testing. The focus of their analysis was the content of textbooks as
well as the features of the textbooks themselves. Features classified included total
number of pages, total text page area, and dimensions of the textbooks. Researchers
identified the topics of mathematical content addressed, the number of times that the
mathematical content changed in the sequence, the characteristics and nature of the

lesson narratives, and student performance expectations. Their framework divided the
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material into blocks where each part could be analyzed independently. The findings
indicated that many mathematics textbooks were mostly composed of exercises and
questions posed.

In contrast, Tornroos (2005) was concerned with content validity of international
tests and he analyzed student opportunity to learn by comparing student performance on
the TIMSS 1999 assessment with an item based analysis of textbook content. Tornroos’
study addressed the topic of opportunity to learn in three different ways. Among these
approaches, an item-based analysis of textbook content resulted in fairly high correlations
with student performance at the item level in TIMSS 1999. This study compared 162
mathematics items from the 1999 TIMSS test against 9 textbooks from grades 5, 6, and 7.
Data were collected on the proportions of the textbooks that were dedicated to different
topics, describing the mathematical content, and analyzing the textbook against the test
items to see if the textbook contained sufficient material to provide the students with the
ability to answer the questions correctly. Results indicated that the use of comparative
analysis of international test results with textbook analysis provides a fairly high
correlation with overall student performance, and hence yields a good measure of student
opportunity to learn.

The preceding studies have contributed to elements incorporated into this study
and helped to inform the development of the framework which will be discussed later in
this chapter. In particular these studies suggest the need to look at the elements and
include “Where” content is positioned in the textbook including: page count (Flanders,
1987; Jones, 2004), the quantity of content (Jones, 2004; Lundin, 1987) together with the

sequence of the topics, and comparison of topics covered by grade level (Flanders, 1987,
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1994a; Herbel-Eisenmann, 2007; Jones, 2004; Jones & Tarr, 2007; Li, 2000; Mesa,
2004; Remillard, 1991; Stylianides, 2005, 2007; Sutherland, Winter, & Harris, 2001,
Wanatabe, 2003). These studies also suggest the need to look at “What”” mathematical
content is included, as: the nature of the lesson presentations (AAAS, Project 2061, 2000;
Flanders, 1987; Haggarty & Pepin, 2002; Herbel-Eisenman, 2007; Johnson, Thompson,
& Senk, 2010; Jones, 2004; Jones & Tarr, 2007; Li, 2000; Martin, Hunt, Lannin,
Leonard, Marshall, & Wares, 2001; Mesa, 2004; Porter, 2002, 2004; Remillard, 1991;
Rivers, 1990; Shield, 2005; Stein, Grover, & Henningsen, 1996; Shields, 2005; Soon,
1989; Stein & Smith, 1998; Sutherland, Winter, & Harris, 2001). Additionally, these
studies suggest the need to focus on the “How” processes, including analysis of student
exercises and performance expectations (Jones & Tarr, 2007; Li, 2000; Tornroos, 2005),
and the level of student cognitive demand (Jones, 2004; Jones & Tarr, 2007; Porter,
2006; Stein, Grover, & Henningsen, 1996; Smith & Stein, 1998; Stein & Smith, 1998).
Content Analysis on Textbook Presentations and Student Expectations

This section presents studies that focus on textbook presentations, nature of
mathematical content, and student performance expectations in textbooks. Even though
this section is limited to the studies that concentrated on the written curriculum, there
were variations noted among the topics of these studies. The variations delineated
illustrate the differences in content analyses that contributed to the structure of the
conceptual framework developed for this study.

Rivers (1990) investigated the content of textbooks adopted in 1984, and a second
set adopted in 1990 for the inclusion of topics of interest to females or ethnic minorities,

motivational factors, and technical aids or manipulatives. Findings indicate that the
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frequency of topics of interest increased from 1984 to 1990. Remillard (1991) studied
how problem solving is presented in one elementary level traditional and three standards
type textbooks; and Sutherland, Winter, and Harries (2001) and Haggarty and Pepin
(2002) focused on multi-national comparisons of mathematics textbooks. Sutherland,
Winter, and Harries examined similarities and differences in ways that images, symbols,
tables, and graphs presented for the study of multiplication compared in textbooks from
England, France, Hungary, Singapore, and the USA. Additionally, Haggarty and Pepin
(2002) examined textbooks from England, France, and Germany for differences in their
treatment of measurement of an angle. They found that clear differences exist in the ways
that this topic is offered between and within textbooks from different countries, hence
providing support for the theory that content analysis is a valuable addition to
mathematics education research.

Porter (2006) developed a two-dimensional language to explain the content of the
mathematics curriculum to compare intended, enacted, and evaluated curricula. The
developed framework used a matrix listing the topics being evaluated and the cognitive
demands on students based on the nature of the presentations. Herbel-Eisenmann (2007)
also focused on language, which she called the “voice” of the textbook, that is, the
interaction between the reader of the textbook and the textbook’s authors. The findings
suggested that the particular language used in the textbook sets up the student as either
“scribbler”, taking orders, or a member of the mathematical community in doing
mathematics. These findings suggest that written materials can either support or
undermine the goals for improving student achievement, and that many different aspects

of analysis can be targeted.
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Yeping Li (2000) extended the focus of Porter’s investigation to include analysis
of the required level of cognitive demand of example problems in lesson narratives and
student exercises. She published results of cross-national similarities and differences on
the content of addition and subtraction of integers in 7th grade textbooks from the United
States and China. She analyzed five American and four Chinese textbooks for differences
in the textbooks’ problems, including the type of response elicited, cognitive demand,
and problem features that would influence students’ performance. The findings of this
investigation indicated that the differences in the problems’ performance requirements
were larger than the differences in the problem presentation features, and that the
American published textbooks had more of a variety of performance requirements than
the Chinese textbooks.

Mesa (2004) examined 24 middle school textbooks from 14 countries to assess
the practices associated with the notion of function in grades 7 and 8. The textbook
sample chosen was based on the Third International Mathematics and Science Study
(TIMSS) data, textbooks that were intended for middle school students, and that
specifically contained references to linear functions and graphing. Mesa used a
framework adapted from the theories of Balacheff and Biehler when she analyzed 1218
tasks identified in the textbooks to do an in-depth analysis of the exercise sections. The
specific inquiry addressed the function in each task, and what needed to be done to solve
the problem. The findings of the study suggested that few textbooks offered clear
suggestions to the students to assist in their performance activities or information on how
to solve a problem in different ways.

Johnson, Thompson, and Senk (2010) investigated the character and scope of
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reasoning and proof in high school mathematics textbooks in the United States to
determine the variation in the treatment of reasoning and proof that might be evident in
different textbook series. The researchers evaluated the narrative and exercises in 20
student editions of textbooks from four nationally marketed textbook series and two
curriculum development projects. The analysis focused on mathematical topics dealing
with polynomials, exponents, and logarithms. The framework used in this investigation
utilized constructs based on the Principles and Standards for School Mathematics
(NCTM, 2000). Findings indicated proof and reasoning were evidenced in greater
instances in the narrative portion of the lessons than in the exercises, and the amount of
reasoning and proof related work varied by mathematical topic and by textbook.
Gabriel Stylianides’ (2005) developed and used an analytic framework he
developed to investigate the opportunities to engage in reasoning and proof in a reform-
based middle-grades mathematics curriculum. Units in algebra, geometry, and number
theory in the Connected Mathematics textbooks were analyzed. The framework
developed by this researcher distinguished the differences in the textbook authors’ design
on reasoning and proof opportunities within the textbook context in comparison to the
opportunities provided for students to learn other mathematical topics. In contrast,
Andreas Stylianides (2007b) investigated proof in the context of an elementary school
classroom. Four characteristics or major features were examined in mathematical
arguments: foundation, the definitions or axioms available for student use; formulation,
the development system in use, as generalizations or logical equivalencies;
representation, response expression expected, as appropriate mathematical language or

algebraic language; and social dimension, the context of the community in which it is to
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be constructed. Stylianides (2007b) found that these four characteristics are derived from
how proofs or mathematical arguments are conceptualized in the framework of
mathematics. The framework he used evaluated mathematical intellectual honesty and
continuity over different grade levels to experience proof in a coherent progression. Both
Stylianides (2005, 2007b) provided background for the examination of the textbook
authors’ design and characteristics of transformation lessons.

Jones (2004) and Jones and Tarr (2007) evaluated the nature and extent to which
probability content was treated in middle school textbooks. They examined two
comprehensive textbook series from four recent eras intended for use in grades 6, 7, and
8. Their research questions (Jones, 2004; Jones & Tarr, 2007) focused on the components
and structure of lessons and the extent of the incorporation of probability tasks over four
eras. Comparatively speaking, they assessed the introduction or repetition of probability
topics in students’ tasks and the use and type of manipulatives suggested. The level of
cognitive demand required in textbook activities and tasks, as related to probability, were
assessed in student exercises using the framework developed by Smith and Stein (1998)
and Stein and Smith (1998). The composed framework allowed for the collection of the
total number of pages in the textbooks, the number of pages devoted to probability, the
location and order of the probability lessons within each textbook, the identification of
the probability lesson’s topics, the suggestion for the use of manipulative devices, and the
level of cognitive demand required by the student in performance expectations to
complete the probability tasks. The work of Jones (2004) and Jones and Tarr (2007)
illustrated the examination of the components and structure of lessons as well as

providing a sample application of the levels of cognitive demand as devised by Stein and
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Smith (1998).
Analyses on Levels of Cognitive Demand Required in Student Exercises

Stein and Smith (1998) designed and tested a framework to identify the level of
cognitive demand needed for students to complete exercises and tasks in textbooks. Their
framework document identified the level of cognitive demand in mathematical tasks by
providing an evaluation of student thinking and reasoning required by the types of
questions posed. This framework was used to evaluate the level of cognitive demand in
student textbook lesson exercises in their study.

Smith and Stein classified questions that require memorization or the application
of algorithms into categories of tasks that require lower-level demands. Questions that
required students to use higher-level thinking were less structured, often had more than
one solution, or were more complex or non-algorithmic. Four categories of level of
cognitive demand for middle school students were identified, as indicated in Table 1.
The outline suggested by Smith and Stein (1998); Stein, Grover, and Henningsen (1996);
Stein, Lane, and Silver (1996); and Stein and Smith (1998) provides suggestions for
determining the level of demand of mathematical tasks. This delineation of levels of
cognitive demand was used in this study to determine the level of cognitive demand
required for student performance expectations in the lesson exercises examined.
Research on Transformation Tasks and Common Student Errors

Research on the geometric transformational constructs and typical student
misconceptions and errors when dealing with transformational tasks are discussed in this
section. The subject matter content is the rigid transformations (translations, reflections,

rotations) and dilations. This research and related curriculum recommendations helped to
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Table 1

Levels of Cognitive Demand for Mathematical Tasks

Level of Cognitive Demand

Characteristics

Lower-Level (LL)
demands (memorization):

Memorization, exact reproduction of learned facts,
vocabulary, formulas, materials, etc., lack of defined

procedures, no connections to mathematical facts, rules

Lower-Level (LM)
demands (procedures
without connections):

Procedures lacking mathematical connections, requires
use of algorithm, no connection to mathematical concepts,

no explanations needed.

Higher-Level (HM)
demands (procedures
with connections):

Procedures with connections, procedures for development
of mathematical understanding of concepts, some
connections to mathematical concepts and ideas, multiple
representations with interconnecting meaning, effort and

engagement in task required.

Higher-Level (HH)
demands (doing
mathematics):

Doing mathematics, requires non-algorithmic procedures,
requires exploration of mathematical relationships,
requires use of relevant knowledge and analysis of the

task requires cognitive effort to achieve solution required.

Note: Based on Stein and Smith (1998) and Smith and Stein (1998).

inform the construction of the conceptual framework in the delineation of specific content

that would address common student errors and misconceptions.

Transformations. In this section, studies reviewed provided background

information on the types of issues students experienced when dealing with two-

dimensional transformation tasks. This section delineates the tasks reviewed and

demonstrates the specific issues where students experienced difficulties.

When students perform transformation tasks, Soon (1989) concluded that her

students, ages 15 and 16, were most successful with transformations in this order:
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reflections, rotations, translations, and dilations. However, Kidder (1976), Moyer (1978),
and Shah (1969) report translations were the easiest transformation for students. Soon
(1989) and Meleay (1998) both indicated that students did not spontaneously use specific
or precise vocabulary when communicating about translations, but rather used finger
movements or words like “move” or “opposite” to indicate the direction of change. Thus,
Meleay emphasized the importance of stressing vocabulary and the development of
drawing skills during instruction about transformations.

Students need concrete opportunities to supplement the words and visuals that are
represented in transformational geometry (Martinie & Stramel, 2004; Stein & Bovalino,
2001; Weiss, 2006). Williford (1972) states manipulatives provide students with a
concrete avenue for understanding concepts that are abstract (Martinie & Stramel, 2004).

Transformational geometry topics may be approached quite
naturally through the manipulation of concrete objects or figure
drawings. . . . Initially, the child performs actions upon objects.
But eventually, after the object becomes distinct images, the child
is able to perform mental transformations (actions) upon these
images. ... imagery evolves from an initial level of reproductive
images based completely upon past perceptions to a level of true
anticipatory images which are imagined to be the results of an
unforeseen transformation. (p. 260)

Several common misconceptions were often exhibited by students when studying
transformations. Many studies indicate that students focused on the whole figure being

moved in the transformation process rather than each point being mapped to a
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corresponding location (Boulter & Kirby, 1994; Hollebrands, 2003, 2004; Kidder, 1976;
Laborde, 1993; Soon, 1989), and students also experienced problems seeing the features
or properties of the figures themselves (Kidder, 1976; Laborde, 1993). Kidder noted that
students in grades 4, 6, and 8 experienced a specific difficulty with the property of
conservation of length. Students focused on the visual features and the movement of the
shape under the transformation rather than on properties of the transformation (Soon,
1989; Soon & Flake, 1989). Laborde went on to suggest that higher level reasoning
powers were required for understanding preservation of properties of figures. Next, the
misconceptions and errors students experience with specific transformations are
discussed.

Issues students experience with transformations concepts. In this section issues
that students experience with the four principle types of transformations and composite
transformations are discussed. The literature identified characteristics and issues with
elements of specific performance within the transformation tasks. The issues discussed
provided background and reasoning for the collection of specific performance tasks in
each of the transformation types as well as the division of tasks into categories of
difficulty.

Translations. The NCTM (Illuminations Lessons List: Translations), Moyer
(1975, 1978), and Shah (1969) state that translations are the easiest transformation for
students to understand. In their work with third and fifth grade students, Schultz and
Austin (1983) and Shultz (1978) found that the direction of the movement of the
translation had a definite impact on the difficulty of the problem; they found that

translations to the right, then to the left were easier than diagonal translations, either up
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and to the right or up and to the left. They also found that as the distance between the
initial and final figure increased in the translation, the students experienced increasing
difficulty in performing the translation tasks.

Flanagan (2001) indicated that students have problems recognizing that the
movement of the figure in a translation is the magnitude of movement and is related to
the length of the vector shaft represented on the coordinate graph. Hollebrands (2003)
affirms that students should recognize that a figure and its image are parallel and that the
distances between the preimage and image points are equal and the same length as the
translating vector. Flanagan (2001) and Wesslen and Fernandez (2005) found that
students did not realize that translating a figure moves every point on the figure the same
distance and in a parallel orientation. The findings above illustrate that it is important to
look at the direction of the translation of the figure since certain directional movements
are easier for students to perform than others, especially the movement of a figure in a
translation that is in a diagonal direction to the horizontal.

Reflections. Through interviews, Rollick (2007, 2009) found that pre-service
teachers had various problems with reflections. The specific reflection that the
participants found the easiest was the movement of a figure from the left to right position
over the y-axis or a vertical line. The participants had problems performing the right to
left reflection and had a tendency to interpret the movement as being top to bottom
instead. Many of the participants identified a reflection as a translation when symmetric
shapes were used. Additionally, sometimes they misunderstood reflections and confused
them with rotating the figure. Rollick (2009) explains that developing the concept of

invariant relationships between the figure and its image is needed to help dismiss these
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misconceptions.

Yanik and Flores (2009) and Edwards and Zazkis (1993) both indicated that
preservice elementary teachers interpreted the line of the mirror as cutting the figure in
half, or alternatively interpreting the edge of the figure as the predetermined line of
reflection. Hence, if pre-service elementary teachers struggle with reflection so might
middle school students. Kuchemann (1980, 1981) found that students had the most
difficulties with reflection over a diagonal line, the students were found to often ignore
the angle or slope of the reflection line and perform a horizontal or vertical reflection
instead; this finding was also evident in the works of Burger and Shaugnessy (1986),
Perham, Perham, and Perham, (1976), and Schultz (1978). The most difficult type of
reflection for students is reflecting a figure over a line of reflection that intersects the
preimage, this type of transformation reflects the image to overlap itself (Edwards &
Zazkis, 1993; Soon, 1989; Yanik & Flores, 2009). In this particular case the use of
tracing paper (Patty paper) would be useful for assisting with this concept (Serra, 1994).
The axes and the preimage would be traced; then, the tracing paper would be flipped over
and aligned to show the position of the image.

The findings on reflections indicate that it is important to document the direction
of movement of the figure since reflection right to left, over a diagonal line, and of a
figure over itself are increasingly difficult. The use of manipulatives was recommended
to clarify these problem tasks.

Rotation. Clements and Burns (2000) observed that fourth grade above average
students first learned about rotation from the experience with physically turning their own

bodies; further the concept of turn to the right and left was developed, followed by the
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amount of turn. Of all of the rigid motion transformations, Moyer (1975, 1978) and Shah
(1969) indicate that elementary students, from 7 to 11 years old, had the most difficulty
working with rotations.

Kidder (1976) found, in his testing of nine, eleven, and thirteen year old students
of average mathematical ability, that students were often unable to imagine the existence
of the angle and the rays necessary for a rotation. The students were unable to hold some
factors constant while varying others to perform a rotation. Kidder also indicated that
students had difficulty holding the distance from the point of rotation to the vertices of
the figure constant while performing a rotation. The students were unaware that angle
measures of the figure remain unchanged under the turn. Olson, Zenigami, and Okazaki
(2008) found that students had a weak understanding that when rays of different lengths
rotated the same number of degrees the same angle measure resulted. Students’
demonstrated common misconceptions about the measure of an angle being determined
by the lengths of the rays that make up the angle (Clements, & Battista, 1989, 1990;
Krainer, 1991). Additionally, Clements, Battista and Sarama (1998) found that students
had difficulty assigning the number of degrees to the angle of rotation, but they were
more comfortable using the measures of 90 and 180 degrees.

Edwards and Zazkis (1993), Yanik and Flores (2009), and Wesslen and
Fernandez (2005) concur that students’ image of rotation was usually at the center of the
figure being rotated, and students had more success with this type of rotation. Wesslen
and Fernandez (2005) found that students were not confident with rotating figures where
the center of rotation was defined as other than the center of the shape or a vertex of the

figure; but students also experienced problems with using the figures’ vertices for center
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of rotation and had difficulty with clockwise and counterclockwise directionality.

Soon (1989) and Soon and Flake (1989) found that students experienced the most
difficulty in rotation of a figure with the center of rotation given as a point external to the
figure. Students had a tendency to ignore the prescribed center of rotation and instead
rotated the figure about the center of the figure or a vertex of the figure; and they
frequently disregarded the direction of turn indicated in the transformation (Soon &
Flake, 1989). Soon (1989) and Wesslen and Fernandez (2005) found that students did not
illustrate knowledge of angle of rotation or center of rotation or both.

Clements and Burns (2000) and Clements and Battista (1992) found that average
4™ graders have many misconceptions and have difficulty learning the concepts of angle
and rotation; these concepts are central to the understanding of rotation. Clements and
Burns suggest that the static definition of angle (An angle is the part of the plane between
two rays meeting at a vertex) may be part of the cause for the misconception. Clements et
al. (1996) found that students did not give notice to the directionality of right or left of a
turn in performing a rotation.

The studies presented above describe numerous problems that students experience
with performing rotational tasks. Among the problems that appear most frequently are the
concept of angle measure, measure of angle of rotation, and center of rotation.
Additionally, the difference between the factors that vary, and those that remain constant
during a rotation appear to create supplementary problems for students when completing
rotational tasks.

Dilations. Soon (1989) found the geometric transformation of dilation to be the

most difficult concept for students as reported by assessment results. Students
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experienced confusion with the scale factor in enlargements; they believed that a positive
scale factor meant an enlargement and a negative factor meant a reduction in size of the
figure (Soon, 1989). Students were reluctant to use specific vocabulary for center of
dilation or for scale factor and would instead use, for example, “equal angle but sides
enlarged two times” (Soon, 1989, p. 173). Also, students consistently expected a change
to occur and could not accept a scale factor of 1/1 or 1 as the identity property for dilation
(Soon, 1989). Hence, discussion on the topics of scale factor, similarity, and identity,
with evidence of terminology use would be expected to be found in the presentations on
dilation.

Composite Transformations. Wesslen and Fernandez (2005) state “the national
curriculum, as it is today in England and Canada for middle grades, does not include
glides” (p. 27) or the general topic of composite transformations. The recommendation
for the inclusion of composite transformations was added to the standards curriculum
documents in the United States (NCTM, 2000). The study of composite transformations
increases understanding for the concept of congruence of two dimensional figures and
provides meaning and closure to the mathematical system of transformations (Wesslen &
Fernandez, 2005), because two transformations can be combined to form a composite
transformation, and the resulting image can be redefined as one of the original
transformations (Wesslen & Fernandez, 2005).

With the inclusion of composites to the topic of geometric transformations, it
becomes possible to define a pattern as simple as a set of footsteps across the sand.
Wesslen and Fernandez indicate that adding composite transformations to the curriculum

“. .. make[s] interesting mathematics because it is a complete system with plenty of
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patterns to be discovered. For example, any two transformations combined seem always
to be one of the already existing transformations” (p. 27). The need to include composite
transformations in the curriculum is reiterated by numerous educators (Burke, Cowen,
Fernandez & Wesslen, 2006; Schattschneider, 2009; Wesslen & Fernandez, 2005). The
properties and a sampling of composite transformations are presented in Appendix B.
The issues students experience with the concept of composite transformations
include the difficulties experienced with each individual type of transformation and
difficulties identifying and understanding the combination of composite transformations
(Addington, http://www.math.csusb.edu/). Students often do not see congruence of
figures when the shapes are placed in different orientations and that using different
direction or distance of movement still yields the same resulting shaped figure. Usiskin et
al. (2003) indicated that a rotation can be considered a composite of reflections, hence
yielding various possible conjectures for students to make. Additionally, problems
experienced by students include determining the distance a figure was to be moved for a
transformation on a coordinate plane; the students seemed to experience difficulty in
determining the distance and direction to move the figure (Usiskin et al., 2003)
Conceptual Framework for Content Analysis of Geometric Transformations
Researchers investigating the effects of curriculum on student achievement focus
on various issues, for example, how to ensure that students are comparable at the start of
an experience, how to randomize students assigned to different treatments, and what
measures to use to evaluate effects on student achievement. But the question of the
comparability of the content of the curricula used has been less evident in research

studies. Stein, Remillard, and Smith (2007) indicate that one approach to analyzing
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students’ opportunity to learn includes looking at what is covered in the content of the
curriculum and how the content is presented.
Summary of Literature Review

This chapter described the curriculum and the textbook, the use of the textbook in
the classroom, the impact that the textbook has on classroom curriculum, criticisms of the
curriculum and the textbook, and the need for content analysis. Next, the literature was
reviewed on various types of textbook analyses as well as on textbook content analyses of
specific mathematics topics. Then findings were presented on an in-depth delineation of
the geometric transformational constructs related to this study, and the types of
difficulties that students experience when learning transformation concepts.

This review of relevant literature has delineated the need for analysis of content
on transformations and has provided background for construction of the conceptual
framework for this study. The next chapter presents the conceptual framework for content

analysis with the methods and the coding instrument utilized.
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Chapter 3: Research Design and Methodology

This study analyzes the nature and treatment of geometric transformations
included in middle grades student textbooks published from 2009 to the present. This
chapter presents the research design and methods used for this study.

The content of this chapter is divided into five sections. The first section presents
the research questions, the second presents the sample of textbooks used for analysis, the
third discusses the development of the instrument used for coding the transformation
lessons, and the fourth describes data collection. Lastly, this chapter culminates with a
summary of the design and methodology.

Research Questions

This study investigates the nature and treatment of geometric transformations
(translations, reflections, rotations, dilations, and composites) in student editions of
middle grades textbooks presently in use in the United States. The intent of this study is
to investigate the following research questions.

1. What are the physical characteristics of the sample textbooks? Where
within the textbooks are the geometric transformation lessons located, and
to what extent are the transformation topics presented in mathematics
student textbooks from sixth grade through eighth grade, within a
published textbook series, and across different publishers?

2. What is the nature of the lessons on geometric transformation concepts in
student mathematics textbooks from sixth grade through eighth grade,

within a published textbook series?
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3. To what extent do the geometric transformation lessons’ student exercises
incorporate the learning expectations in textbooks from sixth grade
through eighth grade within a published textbook series, and across
textbooks from different publishers?

4. What level of cognitive demand is expected by student exercises and
activities related to geometric transformation topics in middle grades
textbooks? The level of cognitive demand is identified using the
parameters and framework established by Stein, Smith, Henningsen, and
Silver (2000).

Together, these four questions give insight into potential opportunity to learn that
students have to study geometric transformations in the middle grades textbooks.
Sample

Different types of developed curricula were included for analysis because they are
constructed on different philosophies and focus on different goals; it was expected that
they would deal with the concepts of geometric transformations differently. Standards-
based textbooks, that is, those developed in response to the Curriculum and Evaluation
Standards (NCTM, 1989) typically place greater emphasis on conceptual understanding
through problem solving and topic investigation, hence focusing on mathematical
structures (Kilpatrick, 2003; NCTM, 1989, 2000; Senk & Thompson, 2003). The
publisher generated textbook has historically emphasized procedural skills and exercises
(Begle, 1973; Senk & Thompson, 2003). Although the mainline publishers continue to
emphasize procedural skills they are including a balance between procedural skill and

conceptual understanding to follow the NCTM recommendations. Therefore, it was
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important to include both types of curricula in the sample.

The sample included four middle grades textbook series available for classroom
use in the United States. Two were from widely used mainline commercial publishers,
Pearson (Prentice Hall) and Glencoe; one was a National Science Foundation (NSF)
funded curriculum project textbook series, Connected Mathematics 2 (CM2); and one
was a non-NSF funded curriculum project textbook series, the University of Chicago
School Mathematics Project (UCSMP). The Pearson and Glencoe textbook series contain
a 6 to 8 basal set and a pre-algebra textbook for grade 8 to accommodate choice on
curriculum content for the study of pre-algebra concepts in grade 8. The CM2 and
UCSMP textbook series contain one textbook for each grade 6 to 8; students would be
expected to complete all three in the series. With the latter two textbook series, students
have completed the equivalent of middle grades algebra by the end of 8" grade.

To ensure a comparison of comparable achievement levels, the pre-algebra
textbooks from Pearson and Glencoe were included in the sample to provide a
comparable analysis to the Connected Mathematics 2 and the UCSMP series that have
pre-algebra and algebra topics embedded within their curricula. The inclusion of
textbooks available for the study of beginning algebra provides information to analyze
the content for variations in potential opportunity to learn depending on the curriculum
sequence that may be chosen by individual districts. Thus, for each of the Prentice Hall
and Glencoe series the books are grouped into two series, 6-7-8 or 6-7-pre-algebra (-pa)
to provide two basis for comparison. The four textbook series included a total of 14
textbooks that were analyzed. The symbols used for the textbooks in this study are

presented in Table 2.
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Table 2

Textbooks Selected for Analysis with Labels Used for This Study

Publisher Title Grade Symbol
Pearson Prentice Hall Mathematics PH
Course 1 6 PH6
Course 2 7 PH7
Course 3 8 PH8
Algebra Readiness Pre-algebra 8 PH-pa
McGraw Hill Glencoe Math Connects: Concepts, Skills, and Problem Solving G
Course 1 6 G6
Course 2 7 G7
Course 3 8 G8
Glencoe Pre-Algebra Pre-algebra 8 G-pa
Pearson Connected Mathematics 2 CM2
Grade 6 6 CM6
Grade 7 7 CM7
Grade 8 8 CM8
McGraw Hill, University of Chicago School Mathematics Project UCSMP
Wright Group
UCSMP Pre-Transition Mathematics 6 U6
UCSMP Transition Mathematics 7 U7
UCSMP Algebra 8 U8

One set of mainline publisher generated textbooks was from Pearson Publications:
Prentice Hall Mathematics, Course 1 (© 2010), Course 2 (©2 010), Course 3 (© 2010)
and Algebra Readiness (© 2010). The Prentice Hall series provides for differentiated
instruction while engaging students in problem-solving skills and procedural
understanding. The Prentice Hall series helps students develop problem solving skills,
test taking strategies, and conceptualize abstract concepts with activities in a structured
approach to mathematics topics. Additionally the use of technology is incorporated in the
presentations of lessons (http://www.pearson school.com).

A second mainline publisher generated series was from McGraw Hill
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Publications: Glencoe Math Connects: Concepts, Skills, and Problem Solving, Course 1
(© 2009), Course 2 (© 2009), Course 3 (© 2009) and Glencoe Pre-Algebra (© 2010).
The Glencoe: Math Connects series features thee key areas: mathematics vocabulary
building to strengthen mathematics literacy; intervention alternatives to improve
achievement levels; and enhanced differentiated instruction to match the needs of
individual students. The curriculum provides a balanced program for mathematics
understanding, skills practice, and problem solving application with problem solving
guidance. The series also contains student feedback after each lesson example,
progressive student exercise sets, self assessment options for students, and higher order
thinking problems in each lesson (http://www. glencoe.com).

The third set of textbooks was from a widely used National Science Foundation
(NSF) funded Standards-based series, from Pearson Publications: Connected
Mathematics 2, Grade Six (© 2009), Grade Seven (© 2009), and Grade Eight (© 2009).
The philosophy of this curriculum is that students can make sense of mathematics
concepts when they are embedded within the context of real problems. Student learning is
to be achieved in the curriculum by problem-centered investigations of mathematical
ideas that include explorations, experience-based intuitions, and reflections that help
students grow to reason effectively and to use multiple representations flexibly
(http://www.phschool.com).

The Connected Mathematics 2 curriculum presentation is quite different from
more familiar curricula formats (http://connectedmath.msu.edu). The Connected
Mathematics 2 is a modular series designed to develop mathematical thinking and

reasoning by using an investigative approach with engaging real-world situations with
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students working in small groups (http://www.Pearson school.com). This series,
Connected Mathematics 2, was chosen because it is the most widely used NSF funded
middle grades series (Dossey, Halvorsen, & McCrone, 2008).

The fourth set of textbooks was from a non-NSF funded curriculum development
project considered to be a hybrid of publisher generated and Standards-based textbooks,
the University of Chicago School Mathematics Project (UCSMP) Pre-Transition
Mathematics (© 2009), Transition Mathematics (© 2008), and Algebra (© 2008). This
curriculum research and development project began in 1983 in response to
recommendations by the government and professional organizations to update
mathematics curriculum. The UCSMP curriculum focuses on interconnected
mathematical components throughout the kindergarten—grade 12 levels to improve the
understanding of mathematics (Senk, 2003; D. R. Thompson, personal communication,
March 6, 2010).

Although the UCSMP textbook series was initially developed before the
Standards, it is specifically perceived to align with the recommendations of the NCTM
Standards to use realistic applications, cooperative learning strategies, problem solving
with reading and technology in the instructional format (Thompson & Senk, 2001,
Usiskin, 1986). These textbooks are specifically designated for use in the middle grades
(UCSMP, n.d.).

Development of the Coding Instrument for Analysis of Transformations

This section describes the development of the coding instrument used to collect

data for the analysis of the nature and treatment of geometric transformations (Appendix

C) in middle grades textbooks. The instrument was initially constructed during the pilot
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study using recommendations for the inclusion of geometric transformation concepts
from the Principles and Standards for School Mathematics (NCTM, 2000) in conjunction
with the properties of geometric transformations, and reviewed literature which suggested
collecting data on the physical characteristics of textbooks. The properties provided
background for the contents of the geometric constructs that were expected to be present
in lesson narratives and explained in student examples.

The coding instrument was tested as part of the pilot study using Glencoe
Mathematics Applications & Concepts Course 3 (© 2004) and Prentice Hall Course 3
Mathematics (© 2004). As indicated in the discussion of the pilot study in Appendix A,
the coding instrument provided confirmation that differences were found in the
presentation and treatment of transformation lessons and in the student exercises in the
textbooks analyzed. Hence, the pilot study provided confirmation that an analysis of
transformation concepts and student performance expectations could delineate
differences in potential opportunity to learn transformations. However, some changes
were made in the coding instrument as a result of the pilot study and the review of
literature. For instance, more space was left for additional totals on page counts and
record of what was observed in the lesson narrative. Based on the research literature the
coding instrument was later extended to look for concepts to address potential
misconceptions. Appendix D presents aspects of transformations that were important to
capture because of issues raised in the research on misconceptions or difficulties that
students experience with these tasks. In view of the difficulties that students experience
with transformations, it seemed logical to document what is available within instructional

content to provide students with the opportunity to avoid these difficulties.
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The review of student exercises for the pilot study confirmed the need to capture
the nature of the tasks that students were expected to complete. Specifically, students
were often asked to respond by providing vocabulary terms, applying steps previously
given, finding coordinates or angle measures of rotation, graphing an answer, correcting
an error in a given problem, or assessing true/false statements about transformations.
Additionally, exercises included an expectation that students would engage with the
process standards (problem solving, communication, connections, reasoning and proof,
and representations) from the Principles and Standards for School Mathematics (NCTM,
2000). Hence, a decision was made to capture the extent to which students are expected
to write about their solutions, work a problem backwards, or give a counterexample.
Because of the recommendation for the inclusion of real world relevance in posing
questions, a decision was also made to document real world connections. Appendix E
illustrates Examples of Student Performance Expectations in Exercise Questions.
Global Content Analysis Conceptual Framework

The description of content analysis from the literature review revealed similarities
and differences among various types of content analysis investigations. In particular, the
body of literature provided background content for the validation in the construction of
the Global Content Analysis Conceptual Framework (Figure 1) which aims to delineate
the areas of textbook content that need to be examined. The center portion of the
Framework contains three segments that encompass the areas of the textbooks that were
analyzed. The left segment addresses the question “Where”, where is the content located
within the textbook. The middle segment addresses the question “What”, what is the

nature of the narrative of the lessons including the content scope, and the opportunities
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Global Framework for Curriculum Analysis

Content Analysis

NCTM Mathematics Curriculum
Standards and Recommendations

Written Curriculum: Textbooks

| Where | | What \ | How
Con‘tent Nar|rative Proc!sses
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e Location Subject Matter Instructional
e Sequence of ¢ Nature of Tasks
Content Topics Covered ¢ Expectations
e Content Scope within
e Opportunities Exercises
for students to e Level of
read Cognitive
Demand within
Exercises
e Inclusion:
Manipulatives
+ Technology

| Opportunity to Learn |

Figure 1. Global Content Analysis Conceptual Framework
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provided for student study. And, the right segment addresses the question “How”, how
are the concepts reinforced in the tasks and exercises, including the level of cognitive
demand required by the students to complete the exercises and the suggestions for the
inclusion of manipulatives and technology use. These collective segments provide
insights about the students’ potential opportunity to learn the mathematical content.

The aforementioned content analyses on specific mathematical concepts and
student performance expectations has helped to extend the “What” portion of the
framework, including the lesson’s narrative content with a focus on components and
structure of presentation (Johnson, Thompson, & Senk, 2010; Jones, 2004; Jones & Tarr,
2007; Porter, 2006), delineation of objectives and properties, and inclusion of definitions
(Stylianides, 2007b). The coding instruction portion containing the “How” processes was
further extended by the content analyses of student performance requirements (Johnson,
Thompson, & Senk, 2010; Mesa, 2004), student exercise features (Li, 2000) with analysis
of the level of cognitive demand required to complete student exercises (Jones, 2004;
Jones & Tarr, 2007; Li, 2000; Porter, 2006; Stein & Smith, 1998), and the
recommendation for the inclusion of manipulatives and technology use (Jones, 2004;
Jones & Tarr, 2007; Rivers, 1990).

Figure 2 illustrates the Conceptual Framework: Content Analysis of Two
Dimensional Geometric Transformations in Middle Grades Textbooks that has been
constructed using the literature reviewed herein and the Global Framework previously
presented (Figure 1). The left hand segment of the illustration concentrates on ‘Where’
the content is located and the sequence of topics presented in the textbook. The center

segment focuses on ‘What’ content is covered in the curriculum by examining the nature
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of the topics covered, the scope of the constructs, and the extent to which lesson content

| Content Analysis: Written Curriculum |

NCTM Mathematics Curriculum Standards and
Recommendations for Geometry: Two Dimensional
Transformations

Content Analysis Middle Grades Textbooks

Where | What | How
| | |
Content Narrative Processes
Presentation
e Nature of Topics e Types of
¢ Relative Location Covered Exercises
in Textbook 0 Objectives
o0 Properties o Level of
e Sequence of o Vocabulary Cognitive
Topics 0 Examples Demand for
Student

e Content Scope
o Use of
Instructional
Aids

e Opportunities for
students to read

e Extent to which
Research Issues
Addressed

Expectations

e Recommended
Instructional Aids
0 Manipulatives

0 Technology

e Extent to which
Research Issues
Addressed

Student Opportunity to Learn 2-Dimensional
Transformations from Textbook Content
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Transformation Lessons in Middle Grades Textbooks

may help lessen the development of student misconceptions. The right hand segment of
the illustration focuses on the ‘How’ processes to support student learning in exercises,
and level of cognitive demand required by the students to accomplish the performance
expectations. Together these areas of examination provide a conceptual framework and a
scaffold to analyze student opportunity to learn geometric transformations in middle
grade textbooks sampled in this study.

The coding instrument has three segments, corresponding to the three segments in
the Content Analysis Middle Grades Textbooks conceptual framework (Figure 2).
Segment 1, “Where”, was designed to support data collection on the physical
characteristics and content of the textbooks as well as the relative placement of the
transformation lessons and sequence of topics. Segment 2, “What”, captures the nature of
the lesson narratives, including the objectives, properties, and vocabulary. Segment 3,
“How”, was designed to capture the processes in the exercises, including types of
exercises, types of performance expectations, and the required levels of cognitive
demand. Table 3 summarizes the data collected in each segment.

The coding instrument Segment 1a provided space to record the physical
characteristics of the textbook including: total number of pages, number of chapters,
number of student instructional pages, number of chapter sections, and number of pages
for chapter review and practice tests as well as additional features, such as example
projects or activities. The number of supplemental pages at the end of the book, for
prerequisite skills, selected answers, extra practice, word problem examples, index, and

glossary was also recorded to provide a basis for reconciliation of lesson pages to the
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Table 3

Three Stages of Data Collection and Coding Procedures

Segment Name Segment Designation and Contents

“Where” -Content Segment la - Textbook contents
Segment 1b - Transformation lesson locations and sequence
Segment 1c - Glossary - vocabulary/terminology check

“What” -Narrative Segment 2 - Lesson Presentation

“How” -Processes Segment 3 - Exercise type, student performance

expectation, and level of cognitive demand

total page count in the textbook. Segment 1b provided space to record all textbook
sections/pages that discuss geometric transformation concepts, these pages were
determined by a page by page inspection of the textbook. Collection of this data was
patterned after the work of Tarr, Reys, Baker, and Billstein (2006) and Jones (2004).

To insure that all geometric transformation content was identified for analysis,
this researcher examined the index of the textbook to identify the location of related
vocabulary and the page numbers of appearance. Initially, the transformation vocabulary
list was amassed during the pilot study from the Glencoe ©2004 and the Prentice Hall
©2004 textbooks and expanded as additional terms were located in lesson narratives and
indices (Table 4). Additional space was provided to add relevant terms when found.
Segment 1c of the coding document lists the vocabulary with space to record the page(s)
on which each term is mentioned. The comparison of identified transformation lesson
locations (Segment 1b) with listed page locations where vocabulary and transformation
topics were located (Segment 1c) was conducted by this researcher to insure that all

transformation lessons throughout the textbook were listed for analysis. Additionally, this
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Table 4

Terminology for Transformation Concepts

Segment 1c: Terminology for Transformations Concepts

Term Term Term
Transformation Composite Transformation Coordinate Plane
Congruence e Glide Two dimensional figures
Similarity
Rotation Symmetry Dilation

e Turn e Line of Symmetry e Dilate

¢ Rotary Motion e Bilateral symmetry ¢ Reduction

¢ Rotation Motion e Turn Symmetry e Stretch

e Clockwise ¢ Rotational Symmetry e Scale model

e Counterclockwise e Scaling

Translation e Scale drawings

Reflection e \Vector e Expand

e Flip e Slide e Enlarge

reconciliation provided a verification check that all transformation instruction was
identified for further examination. A mathematics education colleague reviewed the
method and checked lesson inclusion in the sample textbooks.

Segment 2 “What” (Narrative) of the coding instrument focused on the
transformation content from the narrative of the lessons. The lesson objectives were
recorded when explicitly presented in the lesson. The vocabulary as defined in the lesson
narrative was recorded along with any other pertinent fundamentals observed. When
presented, specific transformation properties were recorded. Space was provided to note
lesson features, including types of examples offered for student study, references to real
world topics, and the suggestions for the use of manipulatives and technology because
recommendations to improve student assessment on geometric transformation tasks

included general indications to provide various types of manipulatives and technology.

67



Hence these suggestions for use were incorporated into the coding instrument (Jones,
2004; Jones and Tarr, 2007; Kieran, Hillel, & Erlwanger, 1986; Magina & Hoyles, 1997,
Martinie & Stramel, 2004; Mitchelmore, 1998; NCTM, 1989, 2000; Stein & Bovalino,
2001; Weiss, 2006; Williford, 1972).

Segment 3 “How” (Processes) of the coding instrument focused on the student
exercises presented following the lesson’s narrative. Each exercise was analyzed for
specific transformation topic(s) included in the questions, type of student performance
expected, inclusion of real-world or other academic subject relevance, suggestions for the
inclusion of manipulatives and/or technology, and level of cognitive demand needed for
students to complete the task.

The complete Coding Instrument is presented in Appendix F and the Instrument
Codes for Recording Transformations in Appendix G. Note, each transformation type
was sub-divided into specific tasks that were identified in the literature as they related to
student difficulties or misconceptions. The codes were delineated to capture specific
requirements of each exercise. Appendix H provides illustrated sample exercises of each
specific characteristic to be coded in the exercises. Appendix | provides sample exercises
classified by the level of cognitive demand required for students to complete the work.
Finally, Appendix J: Background for Content Analysis and Related Research Studies
illustrates the connections of the coding instrument with the ideas based on similar
content analyses (Doyle, 1983, 1988; Jones, 2004; Jones, & Tarr, 2007; Senk, Thompson,
& Johnson, 2008; Smith & Stein, 1998; Stein & Smith, 1998).

Changes to some of the instrument codes occurred during coding of the first

lessons, such as incorporating arrows for direction of movement in reflections and
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translations to insure that questions arising from the various difficulties of directional
movement could be delineated when analyzed. The coding symbol for translation
changed from ‘tl’ to ‘tr’ to provide a direct connection of the word to the symbol. All of
these influences and decisions were collated to create the coding instrument for analyzing
geometric transformations as described above. The next section illustrates the application
of the coding instrument with sample questions.

Sample application of the coding instrument. The following four examples
illustrate the application of the coding instrument. The exercises are from the two

textbooks used in the pilot study.

Graph each point. Then rotate it the given number of degrees about the origin. Give the
coordinates of the image.
16. L (3,3);90° 17.M (-4, -2); 270° 18. N (3,-5); 180°

(Prentice Hall, 2004 p. 172)

Figure 3. Example 1 - Sample of Student Exercise for Framework Coding

The three exercises in Figure 3 were each coded as follows:
e rotation about the origin (Ro),
e apply steps given (Y),
e find the coordinates (),
e graph the answer (G),
e level of cognitive demand (LM) required to complete this task [i.e., follow
algorithmic procedure provided within the narrative of the lesson to

produce the correct answer].

23. Error Analysis A square has rotational symmetry because it can be rotated 180° so
that its image matches the original. Your friend says the angle of rotation is 180° / 4
= 45° What is wrong with this statement? (Prentice Hall, 2004, p. 172)

Figure 4. Example 2 - Sample of Student Exercise for Framework Coding
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Example 2 exercise # 23 was coded as follows:
e rotation about the origin (Ro),
e apply steps given (Y),
e correct the error in the given problem (),
e written answer (),
e level of cognitive demand (HM) (i.e., some degree of cognitive effort-

general procedures with close connections to concepts).

For Exercises 15 and 16, graph each figure on dot paper.
15. a square and its image after a dilation with a scale factor of 4.
16. a right triangle and its image after a dilation with a scale factor of 0.5.
(Glencoe, 2004, p. 196)

Figure 5. Example 3 - Sample of Student Exercise for Framework Coding

Example 3, exercise # 15 was coded as follows:

e Dilation (En),

e apply steps given (YY),

e graph answer (G),

e Manipulative (M) (dot paper),

e level of cognitive demand (HM).
Exercise # 16 was coded as follows:

e Dilation (Di),

e apply given steps (Y),

e graph answer (G),

e Manipulative (M) (dot paper),

e level of cognitive demand (HM).

31. Graph the equation Translate the line right 2 units and up 4 units. Find
the equation of the image line.
(Prentice Hall, 2004, p. 162)

Figure 6. Example 4 - Sample of Student Exercise for Framework Coding
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Example 4, exercise # 31 was coded as follows:
e Translation (Tr),
e apply steps given (Y),
e find the coordinates (YY),
e graph answer (G),
e subject related (alg),

e level of cognitive demand (HH).

Each transformation exercise, either individually numbered or each part of a
multi-part task was counted as one exercise on the instrument. As in the previous
examples each was numbered; exercises labeled with letters a, b, c, etc., instead of
numbers, were each counted as one exercise. Exercises requiring two different parts to
complete were counted as two exercises except in the case of composite transformations,
because the exercise required two steps in the student expectation.

Reliability Measures

Reliability is concerned with stability and reproducibility (Krippendorff, 1980).
Krippendorff refers to stability as consistent coding at different time intervals, where
ambiguities in the text and/or the coding rules and changes in the coder’s judgment on
specific codes are minimized. Krippendorff also refers to reproducibility, called inter-
rater reliability by Gay and Airasian (2000). Inter-rater reliability is concerned with the
extent to which the coding for the study is consistent across different coders. Inter-coder
reliability, also called inter-rater agreement, is a term used for the measurement of the
consistency to which individual coders evaluate characteristics (Budd, Thorp, &
Donohew, 1967; Tinsley & Weiss, 1975, 2000).

Inter-coder agreement is necessary in content analysis to provide measures of “the
g Y y p
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extent to which the different judges tend to assign exactly the same rating to each object”
(Tinsley & Weiss, 2000, p. 98). Inter-coder reliability is an important component of
content analysis, and although it does not insure validity, if it is not present the
interpretation of data cannot be considered valid (Lombard, Snyder-Dutch, & Bracken,
2008). Kolbe and Burnett (1991) state

Interjudge reliability is often perceived as the standard measure of

research quality. High levels of disagreement among judges suggest

weaknesses in research methods, including the possibility of poor

operational definitions, categories, and judge training. (p. 248)

The data collected for this study was subjected to a reliability measures check
with two mathematics education colleagues. The coders were doctoral level mathematics
education students and are well versed in mathematics. The coders were provided with
information on the topics of geometric transformations that are the focus of this study.
Both coders felt very comfortable with the concepts.

The coding procedures started with discussion of the geometric transformation
concepts under investigation, the coding symbols, and the coding instrument. The
characteristics of tasks being identified on the coding instrument were discussed and
symbols reviewed. The coding instrument was reviewed and coding procedures were
discussed. The coders felt that the constructed documents were all encompassing. Sample
questions were used to identify each type of characteristic identified and the coding
symbols were again discussed. The coders agreed the codes no, na, and an entry left
blank meant that the characteristic was not present in the exercise being examined. For

example, if the question did not ask for graphing, the response for graphing was left
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blank on the coding document or the word no or na would mean the same. The level of
cognitive demand required by the student to complete performance expectation in the
exercise task was discussed. A copy of the framework developed by Stein and Smith
(1998) and Smith and Stein (1998) with explanations of the characteristics of each level
of demand was available for use during the coding session.

Next specific questions were identified on each transformation and coded from
the textbooks to clarify any further ambiguities in the coding framework and in the
coding procedures. During coding of the first lesson, the coders collaborated on the
coding of the exercises. In the next phase, a textbook was picked and the coding was
done with further collaborative discussion. Coding continued with occasional
collaborative discussion when a coder felt the need. One coder noticed that to identify a
figure being reflected over/onto itself the coder had to graph the points in order to
determine the location of the image with respect to the reflecting line.

The specific lessons to be analyzed were each recorded on index cards prior to the
start of coding. The index cards were then used to randomly draw the next lesson to be
analyzed. The double coded lessons were highlighted on a master list to determine that all
published series and grade level textbooks were being represented in the analysis.
Stratification by publisher and grade level was insured in the last round of the card draw
by segregating the remaining cards into groups that had been less represented by a second
coding. The total number of lessons double coded by the raters totaled slightly more than
44% of the total number of lessons coded by this researcher (14% more than originally
planned). Approximately 50% of the total number of transformation lessons in each

series was coded by a second rater.

73



Lombard, Snyder-Dutch, and Bracken (2008) indicate that when coding nominal
categories the percent agreement is an inappropriate and misleading liberal measure of
inter-coder consistency, and they list the widely used Holsti’s method as the proposed
indicator. Holsti’s (1969, p. 140) method uses the following formula:

Reliability =2 M / (Na + Nb)
where M is the number of agreed upon coding decisions, and Na and Nb represent the
total number of coding decisions made by the raters. Results of these calculations will
yield a coefficient value between .00 (no agreement) and 1.00 (total agreement).

Berelson (1952) suggested inter-coder reliability would be acceptable with
coefficients of 0.66 to 0.96. Lombard, Snyder-Dutch, and Bracken (2008) list 0.70 as
appropriate for some purposes, 0.80 acceptable in most situations, and 0.90 as always
acceptable. For the purposes of this study an inter-rater agreement of 0.80 or higher was
deemed acceptable, in agreement with Lombard et al. Lombard, Snyder-Dutch. Bracken
(2008) indicates that the minimum sample size to assess reliability is 10% of the full
sample.

A total of 17 lessons (44%) containing 8,112 coding decisions were coded in the
inter-coder reliability process. Of this total exercise number, 7549 represents the number
of agreed upon coding decisions. Using Holsti’s formula, the overall reliability measure
0.931 was obtained, representing an acceptable level of inter-coder reliability according
to Berelson (1952) and Lombard et al. (2008). Additionally the inter-coder reliability
level between each of the two mathematics education colleagues and this researcher were
0.915 and 0.940, respectively. A breakdown of the reliability measures by textbook series

is presented in Table 5, showing the reliability ranged from 0.921 to 0.952.
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Table 5

Reliability Measures by Textbook Series

Textbook Series Total Total Coding Total Reliability Measure per
Questions  Decisions Agreement  Textbook Series

Prentice Hall 131 2096 1932 0.922
Glencoe 164 2624 2424 0.924
Connected

Mathematics 2 139 2224 2117 0.952
UCSMP 73 1168 1076 0.921

Overall Total 507 8112 7549 0.931

Stein, Grover, and Henningsen (1996) indicate that coding for cognitive demand
of tasks necessitates an evaluation regarding the entire task as presented; this task
appraisal requires a comprehensive judgment and makes coding consistency somewhat
tentative. Jones (2004) reported that the inter-rater reliability percentage for the category
of level of cognitive demand was lower than expected because coding was difficult to
reliably assign. Jones reported the level of reliability on the level of cognitive demand
and included a secondary report on the percent of tasks that differed by only one level.
Using the suggestion by Jones (2004), herein, there were 163 disagreements in level of
cognitive demand that differed by one level. By using Jones’ method, reliability was
increased from 0.931 to a second reliability measure of 0.951.

Summary of Research Design and Methodology

The research design and methodology for this study were delineated in this
chapter. The research questions were reviewed and the sample of textbooks examined
was identified. The next section examined the constructed coding instrument and the

procedures for the coding, including locating the transformation lessons and the content
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to be analyzed. A pilot study (Appendix A) was conducted using two eighth grade
textbooks; this study demonstrated the usefulness of the results and reliability of the
coding instrument, as well as the differences found in the series providing indications that
more could be learned from an in depth study. In Chapter 4 the findings of this study are
described; Chapter 5 provides a discussion of the findings, conclusions, and implications

for further research.
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Chapter 4: Findings

The purpose of this study was to analyze the nature and extent of the treatment of

geometric transformations in middle grades mathematics textbooks in an attempt to

gauge students’ potential opportunity to learn transformations. Four series of textbooks

available for classroom use in the United States were examined, each with a textbook for

grades 6 to 8; for two of the series, an additional alternate textbook focusing on pre-

algebra in grade 8 was also included. Consequently, the sample size consisted of 14

textbooks.

Research Questions

The following research questions were addressed in this study:

1.

What are the physical characteristics of the sample textbooks? Where
within the textbooks are the geometric transformation lessons located, and
to what extent are the transformation topics presented in mathematics
student textbooks from sixth grade through eighth grade, within a
published textbook series, and across different publishers?

What is the nature of the lessons on geometric transformation concepts in
student mathematics textbooks from sixth grade through eighth grade,
within a published textbook series?

To what extent do the geometric transformation lessons’ student exercises
incorporate the learning expectations in textbooks from sixth grade

through eighth grade within a published textbook series, and across
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textbooks from different publishers?

4. What level of cognitive demand is expected by student exercises and
activities related to geometric transformation topics in middle grades
textbooks? The level of cognitive demand is identified using the
parameters and framework established by Stein, Smith, Henningsen, and
Silver (2000).

Together, these four questions give insight into potential opportunity to learn that
students have to study geometric transformations in the middle grades textbooks.
Analysis Procedures

Both descriptive statistics and qualitative methods were employed in the analysis
of the collected data. The data analysis utilized percents, graphical displays, and
narratives to illustrate the level of opportunities that students have to learn geometric
transformations. The data collected was analyzed by comparing the textbooks from the
sixth grade through the eighth grade within a published textbook series, and across
textbooks from different publishers.

In particular, the data were analyzed within the sampled textbooks in terms of
comparison of number of pages devoted to concepts, location of lessons within the
textbooks, order in which lessons were presented, kinds of examples offered in the
narrative for students study, number and types of student exercises presented, type of
work required by students to complete exercises, kinds of manipulatives and technology
suggested for student use, and the level of cognitive demand required by the student to
complete lesson exercises.

Both the Prentice Hall (PH) and Math Connects (G-Glencoe) textbook series
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offered a choice of two textbooks for use in grade eight (PH8 or PH-pa, and G8 or G-pa)
allowing individual school/district choice for the middle school curriculum to include
pre-algebra and algebra topics that were included in the three textbook Connected
Mathematics 2 and UCSMP series. To allow for comparison depending on the nature of
the series used, analysis for PH and G was done using the basal series and again using the
67-pa textbook sequence. It was believed this would provide a fairer comparison with the
CMP and UCSMP textbook series. Connected Mathematics 2 was coded using the single
bound edition of the textbook, even though it is primarily used in modular form where
instructional units could be presented in different sequences depending on district or
teacher’s choice. The lesson placement was determined using the publisher’s suggested
order in the single bound edition of the CM textbooks. The descriptive statistics were
based on the transformation modules presented third in CM6, second in CM7, and fifth in
CMB8, as ordered in the single bound editions.
Organization of the Chapter

This chapter was organized into four sections to address the four research
questions. The first section presents findings on “Where” the content was located within
the textbooks, including physical characteristics of the instructional pages, lesson
locations and sequence within the textbook layout. The second section presents findings
on “What” was included in the Narrative components of the lesson, including structure of
the lesson presentations and lesson components with the scope of the concepts. The third
section presents data on student exercises, including total number and specific
characteristics of the student exercises, expected student performance required to

complete the exercise tasks, as well as the types of learning processes utilized in
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answering the exercise questions, and the suggested use of manipulatives and technology.
The fourth section presents findings on the level of cognitive demand necessary for
student expected performance in the exercises. This chapter ends with a summary of the
results. Together these results are used in the discussion chapter to address students’
potential opportunities to learn geometric transformations from middle grades
mathematics textbooks presently available for use in the United States.
Physical Characteristics of Transformation Lessons in Each Series

This section presents data addressing the research question: What are the physical
characteristics of the sample textbooks? Where within the textbooks are the geometric
transformation lessons located, and to what extent are the topics presented in
mathematics student textbooks from sixth grade through eighth grade, within a published
textbook series, and across different publishers?

Location of pages related to transformations. Table 6 displays the physical
characteristics of the textbooks and the location “Where” the transformation lessons
appear. Presented are the number of instructional pages in each textbook, page number of
the first transformation lesson and percent of textbook pages prior to the first
transformation lesson in each textbook. The total number of textbook pages related to
transformations was calculated using linear measurement of the pages to the closest one
quarter of a page and then rounded to the tenths place in the table presentation. The table
summary presents the total number of pages of transformation lessons contained in each
textbook and the percent of the transformation lesson pages to the total number of
instructional pages.

Table 6 also presents the number of chapters and sections contained in each
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Table 6

Pages Containing Geometric Transformations in the Four Textbook Series

Text Total Number Number  Number  Number Percent Page # % Pages Number Percent
book Page Instr. of Total Transf. Transf. First Prior to First Transf. Transf,
Count Pages  Chapters  Lessons Lessons Lessons Transf. Transf. Lesson Pages to
Lesson Lesson Pages Total
PH6 730 603 12 94 2 2.1 398 66.0 7.3 1.2
PH7 622 622 12 94 3 3.2 509 81.8 11.3 1.8
PH8 746 596 12 88 4 45 136 22.8 145 2.4
PH-pa? 808 648 12 100 3 3.0 476 73.5 12.5 1.9
G6 853 669 12 100 3 3.0 604 90.3 15.5 2.3
G7 857 674 12 100 2 3.0 546 81.0 9.5 14
G8 856 690 12 100 4 4.0 225 32.6 19.3 2.8
G-pa? 1033 806 13 99 3 4.0 101 12.5 16.8 2.1
CMe2 683 596 8 34 1 2.9 154 25.82 55 0.9
CM72 738 650 8 34 2 5.9 87 13.42 24.5 3.8
CM82 717 639 8 35 3 8.6 323 50.52 53.8 8.4
U6 860 765 13 106 4 3.8 644 84.2 20.0 2.6
u7 885 791 12 105 5 4.8 356 45.0 29.3 3.7
U8 918 835 13 108 0 0 8353 100.0 0.0 0.0
Key: Transf. = Transformation Instr. = Instructional

8 Textbooks -pa (pre-algebra) are offered by publishers as an alternate textbook for grade eight curriculum.

2 Textbooks are composed of modules that can be rearranged for instructional choice; calculations are based on
the order of modules presented in the single bound edition.

3 U8 contained no lessons on transformations.
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textbook. The transformation lessons included in this table were complete lessons,
including narrative, examples, and student exercises. Pages of lesson extensions,
additional activities, and projects were not included as an individual lesson. With the
exception of the PH6, G7, CM6 and CM7 textbooks, that each contained two or fewer
lessons on transformations, the sampled textbooks each contained between three and four
lessons on transformation topics.

The number of chapters and sections contained in the textbooks of the Prentice
Hall, Glencoe, and UCSMP series appeared to be consistent. The number of chapters
(student unit paperbacks) and sections contained in the CM2 series was found to be
lower than the other three textbook series, although the total page counts were somewhat
similar across all four series. The textbook series CM2 included two textbooks with the
highest percentage of lesson pages focused on transformations, followed by UCSMP and
PH, even though there were no transformation lessons contained in the U8 textbook.

The number of instructional pages in the fourteen textbooks ranged from 596 to
806, with an average of 685 and standard deviation of 78 pages. The UCSMP Algebra
(U8) textbook did not contain any transformation lessons, and was excluded from the
page total analysis. The percent of instructional pages of transformation topics ranged
from 0.9% to 8.4%, with an average of 2.5% and a standard deviation of 1.9%. Only one
textbook (CM8) had more than 5% of total textbook pages devoted to transformation
lessons, and only two (CM7 and U7) had more than 3%.

The Prentice Hall and Glencoe textbooks appeared to be similar in the percent of
pages devoted to transformations. Notice that CM8 placed a larger amount of emphasis

on transformations indicated by 8.4% of pages devoted to transformations, that is, twice

82



the percent of pages as in any other textbook herein examined. The analysis highlights
that PH7, G6, G7 and U6 placed transformation lessons in the fourth quartile of the
textbook pages.

Table 7 presents the relationship of transformation instructional pages to student
exercise pages. The division of instructional pages to the number of exercise pages was
approximately equal in the Prentice Hall series. This equality of pages was also true for
the Glencoe and the UCSMP series. The Connected Mathematics series provided almost
three times more page count devoted to student exercises than to instruction. Two of the
Connected Mathematics 2 textbooks, CM7 and CMB8, contained 25 and 54 lesson pages
on transformations respectively. The majority of transformation lesson pages were
dedicated to student exercises, with 70% in the CM6 textbook and 80% in the CM7
textbook. The UCSMP textbooks (U6, U7) contained 20 and 30 lesson pages on
transformations respectively, with 40% and 50% of these pages devoted to student
exercises.

Relative position of transformation lessons. Figure 7 displays the position of
each type of transformation lesson within the textbooks with respect to the percentage of
pages covered prior to the introduction of each topic. Ten of the textbooks presented the
topic of translations and reflections in lessons following one another. One of the
textbooks (PH8) presented all four of the transformation topics in lessons in close
proximity to one another, whereas three of the textbook groupings did not address one or
more of the transformations over the three book sequence.

Analysis of the physical characteristics revealed that transformations were

contained in 13 of the 14 textbooks that comprised the sample. The UCSMP Algebra
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Table 7

Geometric Transformations Lessons/Pages in Textbooks

Textbook  Total Transformation Number of Tranfs. Number of
Pages Instructional Pages Transf. Student
Exercises Pages
PH6 7.3 3.8 3.5
PH7 11.3 6.0 5.3
PHS8 14.5 7.8 6.8
PH-pa 12.5 6.0 6.5
G6 15.5 7.3 8.3
G7 9.5 4.5 5.0
G8 19.3 10.8 8.5
G-pa 16.8 8.5 8.3
CM6 55 1.3 4.3
CM7 24.5 7.0 17.5
CM8 53.8 12.3 41.5
U6 20.0 115 8.5
U7 29.3 16.0 13.3
U8 0.00 0.0 0.0

(U8) textbook was the only textbook that did not contain any transformation lessons. The
first transformation lesson occurred not until the first 90% in pages of the Glencoe, G6,
textbook but within the first 12.5% of pages in the Glencoe Pre-Algebra textbook.

The first transformation lesson was placed in the first quartile of pages in the
Prentice Hall PH8, Glencoe Pre-Algebra, and Connected Mathematics 2, CM7*
textbooks. (*The position of the transformation topics in the Connected Mathematics 2
textbooks was determined by the order of units as recommended by the publisher;

because the units were stand-alone soft covered workbooks, the order of use could be
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rearranged by the teacher or district curriculum specialist). Four other textbooks first
presented transformations in the second quartile range of textbook pages (Glencoe, G8;
Connected Mathematics 2, CM6 and CM8; UCSMP, U7-Transition Mathematics), and
two textbooks placed the first transformation lesson in the third quartile range of pages
(Prentice Hall, PH6 and Pre-Algebra). Four textbooks placed the first transformation
lesson in the fourth quartile of pages (Prentice Hall, PH7, Glencoe, G6 and G7; and
UCSMP U6- Pre-Transition Mathematics). Because research has pointed out that lessons
placed within the fourth quartile of textbook pages are not likely to be studied during a
school year (Tarr et al., 2006; Weiss et al., 2001, 2003) it is unlikely that students would
have the opportunity to study these lessons.

Lesson pages related to each type of transformation. The types and quantity of
pages of each type of transformation are listed in Table 8. The types of transformation
lessons, both narrative and exercises, contained in each textbook were listed by the total
number of pages dealing with the construct. The pages were coded using linear measure,
and each lesson page assessed was subdivided to the closest fourth of the page when
more than one topic was included. The total page number listed in this table for each type
of transformation was complied by adding the pages that primarily dealt with a specific
transformation concept. Some approximation was necessary when more than one type of
transformation was presented in the lesson narrative and exercises. The data in the table
were rounded to the tenths place.

The proportion of pages devoted to transformation topics varied by textbook. The

Prentice Hall textbooks predominately focused on the rigid transformations (reflections,
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Table 8

Number of Pages of Narrative and Exercises by Transformation Type

Translations  Reflections/ Rotations/ Composite
Reflectional Rotational  Dilations Transformations
Symmetry Symmetry

PH6 13 3.0 3.0 0.0 0.0
PH7 3.8 3.8 3.8 0.0 0.0
PHS 3.8 3.8 35 35 0.0
PHpa 4.5 4.0 4.0 2.0 0.0
G6 55 5.0 5.0 0.0 0.0
G7 4.5 5.0 0.0 0.0 0.0
G8 45 4.8 45 5.5 0.0
Gpa 2.8 2.8 5.8 5.5 0.0
CM6 0.0 2.8 2.8 0.0 0.0
CM7 0.0 0.0 0.0 25.8 0.0
CM8 14.8 16.8 15.0 0.0 7.3
U6 5.0 45 105 0.0 0.0
U7 6.8 8.0 7.5 7.0 0.0
us 0.0 0.0 0.0 0.0 0.0

translations, rotations); the Glencoe series was similar but included an equal proportion
of pages devoted to dilations in the G8 and G-pa textbooks. The Connected Mathematics
2 series focused exclusively on dilations in the CM7 textbook and on the three rigid
transformations in the CM8 textbook. The UCSMP series also included the topic of
dilations in the U7 textbook. Yet, the overall proportions of lesson pages on each
transformation did not appear to adhere to any systematic order or arrangement within the
textbooks.

To summarize, within the textbooks of each series and across the textbooks of the
four publishers the order of presentation of transformation topics and the appearance of
all types of transformation topics appeared to be generally inconsistent. Translations were

offered first in seven of the textbooks, but only five of these offered reflection as the
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second topic. The topic of rotations appeared in 11 of the textbooks, but the topic of
dilation appeared in only six of the fourteen textbooks examined.

The order of the transformation topics varied among grade levels and across the
four publishers. The findings indicated that each of the thirteen middle school
mathematics textbooks presented topics of transformations, but the inclusion of all
concepts, the order of presentation, and the location within the textbooks were
inconsistent among grade levels and across published series. Inconsistency in the
particular transformation topics included the order of presentation of the topics, but a
rationale for the order of lesson topics within the student textbook editions was not
included and could not be determined by the focus of this study’s findings.
Characteristics and Structure of Transformation Lessons

This section presents data addressing the research question: What is the nature of
the lessons on geometric transformation concepts in student mathematics textbooks from
sixth grade through eighth grade, within a textbook series and across different publishers?
The following section discusses the findings related to the components of the
transformation lessons, the structure of the lesson and the narratives, how the components
were typically organized in each series, and the characteristics of the presentations of the
transformation constructs.

Components of transformation lessons. Of the four series analyzed in this
study, the formats of the lessons in three of the textbook series were similar. The Prentice
Hall, Glencoe, and UCSMP series basically contained the same types of components
although they have been given slightly different titles. Differences within lessons were

observed in the titles of the sections within a lesson, for example, Prentice Hall labeled
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student exercise questions as Homework Exercises, Glencoe labeled the questions as
Practice and Problem Solving, and UCSMP used the label Questions.

The Prentice Hall, Glencoe, and UCSMP series started lessons with the objectives
or a listing of the Big Ideas for the lesson. The topic was then discussed with vocabulary
defined within the body of the lesson; terms were sometimes highlighted or bolded in the
script. Most often the terms were defined within the narrative portion and the wording
remained exactly the same or similar in presentations from the sixth through the eighth
grades within a series. When a topic was repeated in the next grade level the depth of
content did not increase. It was observed that the definitions of terms appeared to be
presented in a mathematically formal form with accompanying explanations in the
UCSMP series textbooks.

The narrative of the lessons contained discussion of the transformation topic with
illustrations or graphs, a range of two to four examples worked out for student study
within the narrative section, and exercises for student practice. Typically, examples
presented steps for students to follow when completing the given questions; then a
similar sample problem was provided for the student to answer orally or complete in
written form. The Prentice Hall series offered some student activities at the beginning of
the lesson, whereas the Glencoe lessons sometimes began with a Mini Lab. All three
series kept the same structure for the middle grades textbook sequence with few
exceptions. UCSMP textbooks presented framed blocks or highlighted sections for
properties, rules, and important key concepts. The U6, U7, G-pa textbooks were found to
contain increased amounts of discussion and explanations about transformation concepts

in the narrative of the lessons, as well as more detail in the diagrams that accompanied
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the student examples than was found in the other textbook examined.

The narratives of the lessons were followed by student exercises to be completed
in or out of class. Both the Prentice Hall and the Glencoe series typically included 3 to 7
questions to check for student understanding within the set of student exercises. The
number of student exercises within the lessons of the three series varied from 14 to 35,
with each series individually averaging approximately 22 exercise problems over the total
number of lessons on transformations.

In contrast, the Connected Mathematics 2 series textbooks and lessons appeared
in a different format. The unit modules in the CM2 series were similar to chapters in the
other three series. The modules were stand alone bound paperback modules to be
presented in an order determined by the teacher or school curriculum specialist. Each
module began with pages numbered starting with one and included a glossary and index
for the unit topics. The module (chapter) was divided into sections called investigations
and each contained up to five sub-investigations. The objectives were presented at the
beginning of the module and were not delineated for individual investigations. In the
units (chapters) analyzed in this study, not all of the investigations (lessons) contained
within a unit were in direct correlation to the transformation concepts under investigation,
and hence were not included.

Each CM2 investigation was subdivided into problem activities which began with
a short discussion and a list of student questions to be worked to expose students to the
topics and concepts. Each investigation was subdivided into student activities designed to
enhance the topic of the investigation. There was little narrative discussion or worked-out

examples for student study; rather, it appeared that students were expected to work on
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assigned questions designed to have students discover the material important for the
concepts. It was noted that few terms were defined in the lessons examined in the
Connected Mathematics 2 series, likely because the format of the textbooks were based
on student discovery through investigation. The student exercises were placed at the end
of the investigations without designation as to which questions accompanied which
subdivision of concepts. The activities in each subtopic numbered from two to eight
questions, each with multiple parts. Approximately 30 to 60 student exercises followed at
the end of all of the investigation questions, with an average of 43 questions.

Characteristics of transformation constructs in each textbook series. In the
following sections transformations found in each textbook series is discussed.

Prentice Hall textbook series. The Prentice Hall textbooks contained lessons on
symmetry, line of symmetry, reflections, translations, rotations, and dilations. Each type
of transformation is discussed below.

Symmetry, line of symmetry, and reflection. Prentice Hall presented the topic of
line symmetry in each of the four sample textbooks. In the PH6 textbook, lesson 8.7
focused on line symmetry, with both the term line symmetry and line of symmetry
defined. Examples were given showing line figures and drawings. No specific
instructions were indicated with the examples. Students were asked to determine if a line
of symmetry was present and how many lines of symmetry a figure had. Reflection in
PHG is presented in lesson 8.8 on transformations where this topic was mixed with
translations and rotations.

PH7 lesson 10.6 included line of symmetry with reflections. This section started

by identifying lines of symmetry to introduce the topic of reflection. Similar examples,
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drawings, and graphs were used in PH8 lesson 3.7, for example explain the line of
reflection. The lessons in both PH7 and PH8 presented the same sequence by first
reflecting a point, then a triangle over the y-axis from left to right. The questions for
students following the examples asked for a response on the same type tasks. PH-pa,
lesson 9.9 addressed line symmetry with the topic of reflections. An illustration of a
pattern for clothing illustrated the line of reflection; other diagrams and graphs were
similar to what was presented in the previous textbooks examined in this series. The PH-
pa did add an example of reflection over a horizontal line of symmetry that was not
previously observed. The instructions for reflections were written in the body of the
examples and the properties of reflection were not highlighted or delineated in the lesson.
Translations. The second section examined in PH6, lesson 8.8, presented the topic
of translations mixed with reflections and rotations. The examples offered for student
study show drawings of figures translated from left to right. This example provided two
line drawings and questions to determine if the figures appeared to be transformed by
translation. The student oral example asked a similar question. The lesson in PH7, lesson
10.5, used the vocabulary of image and prime notation. Examples were provided to
illustrate the concept; one was translation of a point, the other of figures translated to the
right and down direction. Instructions were provided within the body of the examples to
provide work for the student to follow. The student oral questions were similar to the
provided examples with figures translated up and to the left. The examples provided in
PHS8, lesson 3.6, were similar in presentation and use of figures and illustrations. The
same terminology (transformation, translation, and image) and definitions were used in

both textbooks; the term prime notation was defined in the PH7 textbook. The lesson in
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PH-pa, lesson 9.8, mirrored the previously presented examples for translating points and
figures with the exception that one example illustrated the translation of a point to the left
and up.

Rotations. The textbook PH6 included one example on rotation mixed in with
transformations, in lesson 8.8. This example showed a flower with petal rotation of 120°.
No explanation was offered for determining the number of degrees and no instructions

were offered in the example (Figure 8).

Example Application: Nature
3. Through how many degrees can you rotate the flower at the left so that the
_image and the original flower match?

5
2

(similar picture)
The image matches the original flower after rotations of 120°, 240°, and 360°.
Prentice Hall, Course 1, ©2010, p 403

Figure 8. Rotation Example

The student oral example asked the student to determine if a given figure had
rotational symmetry, but this topic is not covered further. In lesson 10.7 of PH7,
rotational symmetry and finding the angle of rotation were discussed. The rotation
examples and exercises were all presented in the counterclockwise direction. In PH7, the
narrative of lesson 10.7 states:

“The direction of every rotation in this book is counterclockwise unless

noted as clockwise. If a figure can be rotated 180° or less and match the

original figure, it has rotational symmetry.” (bold in original, p. 519)
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No explanation or reasoning was offered for these parameters placed on the
rotation examples or exercises and most of the problems followed the counterclockwise
direction for movement. The example illustrated rotation displays on two graphs, one
with 180° left hand rotation about the origin, the other with 90° left hand rotation about
the center of the figure. The angles used in the textbooks focus on angles of rotation
based on 90°, 180°, 270°, and 360°, and remained the same through the PH8 textbook.
The example in the PH8 textbook on graphing rotations showed steps for graphing an
image. This depth of discussion did not appear in the previous grade levels. Few
exercises within this series asked for angle of rotation, or rotation about a point other than
the origin or vertices of the figure. The method to determine the angle is not described.
Lesson 9.10 in the PH-pa textbook defined the terms using the same wording, diagrams,
and graphs offered for student study, and were similar to what was presented in both the
PH7 and PH8 textbooks. In this series of textbooks, the topic of dilations was addressed
only in the PH8 textbook and delineation of rotation properties was not evident. Both
enlargements and reductions were presented as well as questions on scale factor.

Dilations. In this series of textbooks, dilations were presented only once in PH8
lesson 4.5, entitled Similarity Transformations. Three examples were provided, one on a
reduction dilation of a triangle with instructions for finding the side lengths of the image.
The second example illustrated an enlargement and gave steps to find the coordinate
points of the vertices. The last example showed finding the scale factor in a reduction
problem. The three oral student questions were similar to the example problems.

Glencoe textbook series. The Glencoe textbooks contained lessons on symmetry,

reflections, translations, rotations, and dilations. Each type of transformation is discussed
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below.

Symmetry. The Glencoe series presented lesson 6.5 on symmetry in the G8
textbook. The lesson began with a Mini Lab where the students were asked to trace the
outline of The Pentagon. Students were instructed to draw a line through the center and
one vertex of The Pentagon, fold the paper at the line, and examine the results. Within the
same Mini Lab, students were instructed to trace the Pentagon on tracing paper and then
to hold the center point and rotate the figure from its original position to find rotational
matches. Instructions were provided to expose the student to the concepts of line
symmetry, lines of symmetry, rotational symmetry, and angle of rotation. Three
additional examples were provided, each with similar reinforcement questions following
each example.

Reflection and translations. The Glencoe G7 lesson began with an example on
line symmetry. Both G6 lesson 11.9 and G7 lesson 10.10 provided examples on reflecting
figures over the x-axis in both the upward and downward direction and asked the student
to reproduce similar reflections. In the G6 textbook, students reflected a figure to the left,
but the textbook did not provide instructions; in contrast, the G7 textbook provided
instruction for completing the movement of the figure to the left. Similar coordinate
graphs were provided in the examples in both of the textbooks. In the G6 lesson, a
highlighted block was provided for student study on terminology and illustrations of
figures reflected over the x- and y- axes. Lesson 6.6 on reflection in the G8 textbook
provided an example of reflection with movement to the left, and one with movement
upward. The third example on reflection added line symmetry to the concept by having

one point of the figure placed on the y-axis. The narrative drew students’ attention to the
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fact that the line of reflection was also the line of symmetry in this example.

The structure of G-pa lesson 2.7 was different from the lessons previously
reviewed in textbooks in this series. In this lesson, both reflections and translations were
presented in the discussion portions prior to the presented examples. The terms flip and
slide were provided in a key concept highlighted block. The coordinate plane diagrams
were detailed showing the coordinates of the figures. Following each discussion was a
detailed example with instructions to complete the transformation. One example was
provided to reflect a figure downward and then to the right. The second student example
included a new element with the student reflecting the figure over the y-axis and then
onto the figure itself. This type of direction had not been discussed previously within this
lesson or the previous textbooks in this series. Translations were also discussed in G-pa
lesson 2.7 by providing illustrations of the movements of the figures, and an example
with movement of a figure to the right and downward.

Textbook lessons G6-11.8, G7-10.9, and G8-6.7 presented examples that
appeared to be similar across all three textbooks. The specific topics covered were
translating figures to the left, right and down, and left and down. Finding the coordinates
of the figure after it was translated was also presented. G6 included a key concept block
with terminology and a model drawing of a translation.

Rotations. Lesson 11.10 on rotation in the G6 textbook begun with a Mini Lab
that directed an activity in which students attached a piece of tracing paper to a
coordinate plane with a fastener. A figure was traced onto the tracing paper and then the
rotation was illustrated by the movement of the figure on the tracing paper around the

fastener as the origin. Both clockwise and counterclockwise rotations were used with
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angle measure of 90°, 180°, 270°, and an explanation was provided that any measure may
be used from 0° to 360°. The topic of rotational symmetry was covered in one example
using a drawing of a snowflake. Lesson 11.3 on rotation in the G-pa textbook followed a
slightly different format. More discussion and graphs were provided in the explanation.
The center of rotation was discussed and illustrated, and there was an example of a
rotation about a point other than the origin. However, the angle measures of rotation
remain a multiple of 90°. Here, also, rotational symmetry was presented in one example
using a drawing of a snowflake.

Dilations. Lesson 4.8 on dilations was introduced in the G8 textbook with a Mini
Lab that gave instructions to dilate a figure by increasing the size of the grid on the paper.
Both lesson 4.8 and lesson 6.8 in the G-pa textbook provided examples with instructions
to shrink a figure and another to enlarge a figure. All of the examples used the origin as
the center of dilation. Both lessons provided examples on finding the scale factor of the
size change. The G8 textbook provided a real-world example of the size in change of a
person’s pupils when having an eye exam.

Connected Mathematics 2 textbook series. The units under investigation in the
textbooks began with a list of objectives for the unit, but the list was not delineated to
align each objective to a particular lesson or activity. The divisions in the units were
called investigations. The typical unit contained up to five investigations, although all
were not in direct correlation to the concepts under investigation in this study. An
investigation was subdivided into problem activities which began with a discussion and a
list of student questions to be worked for the student to explore the concept ideas. The

problem activities numbered from two to eight questions with multiple parts each. The
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student exercises followed all of the problem activities contained in the investigation and
numbered from approximately 30 to 60 questions.

Symmetry and line of symmetry. A module entitled Shapes and Designs: Two-
Dimensional Geometry was included in the CM6 curriculum. The second part of
Investigation 1 discussed reflection symmetry (also called mirror symmetry) and rotation
symmetry. The student was asked to identify reflection symmetry and rotation symmetry
in drawings, in triangles, quadrilaterals, polygons, and other shapes found in the
classroom. Three types of symmetry were discussed again in the CM8 module entitled
Kaleidoscopes, Hubcaps, and Mirrors: Symmetry and Transformations. Reflectional
symmetry and rotational symmetry were discussed and the topic was expanded to include
center of rotation and angle of rotation. The subject of kaleidoscope designs and
tessellations were included to describe the basic design elements. This module continued
and discussed translational symmetry.

Reflections, translations, and rotations. Reflections, translations, and rotations
were discussed in Investigation 2 of the CM8 Kaleidoscopes, Hubcaps, and Mirrors
module. This Investigation presented symmetry transformations and began with
reflections over the y-axis. In an example for students to answer, there was a problem
where the figure was reflected onto itself. The topic of rotation and then translation was
presented in the student questions. The topic of these transformations and symmetry was
related to describing tessellations. Investigation 5 in this module discussed transforming
coordinates and the rules used for reflections. Next the rules for translation of figures
were presented followed by the rules for rotations. The fourth part of this Investigation

presented rules for combinations of transformations. This was the only direct reference to
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composite transformations observed in all CM2 sampled textbooks. The narrative
sections in these units presented limited terminology and information about the
mathematical concept. The student was directed to work on problems to achieve the
specifics that were presented in the examples in the other three series examined in this
study.

Dilations. A unit in the CM7 textbook was dedicated to the topic of dilations; the
title of this unit is Stretching and Shrinking. Investigation 1 immersed the student in
solving a mystery. This activity centered on identification of a person by enlarging
diagrams using a two-band stretcher. Next the topics of scaling up and down were
explored. Investigation 2 presented work with similar figures and the student was to
explore scaling by construction of a table of points showing scaling and distorted scaling
(one coordinate is changed but the other was not). Different scaling examples were
provided using a cartoon character, and scaled figures as cartoon family members.

UCSMP textbook series. The UCSMP textbooks contained lessons on symmetry,
reflections, translations, rotations, and dilations. Each type of transformation is discussed
below.

Symmetry and reflections. The topics of symmetry and line symmetry were
presented in lesson 2.3 of the U6 textbook. The list of vocabulary included symmetric,
reflection-symmetric, symmetry line, rotation-symmetric, rotation symmetry, and center
of symmetry. This lesson addressed the topics of reflection and rotation symmetry in a
general discussion about symmetry, the advantages of recognizing symmetry in a figure
was included. The narrative points out that if a figure was reflected over a line through its

center, it is not possible to distinguish the image from the preimage. Rotational symmetry
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was defined as the center of symmetry. Tracing paper was suggested for use in the
practice for rotational symmetry.

Lesson 6.2 in U7 continued this topic with reflections and reflection symmetry.
Examples were given for reflecting a figure over a line (not present in the example), and
reflecting a figure over-onto itself. In an example of reflecting a point over a line, the
property of the line being the perpendicular bisector of the distance between the points
was illustrated and discussed. Additional examples included reflecting a figure over an
oblique line, reflection symmetry of a figure over/onto itself, and symmetry in regular
geometric figures. Although there were no specific lessons on transformations in U8, the
terms reflection-symmetric and axis of symmetry were discussed within the topics of
quadratic equations and graphing.

Translations. In U6 lesson 11.6 a translation was defined using the term slide. The
term vector was defined and used to indicate the movement of the translation and the
parts of the arrow were delineated with their meaning. Examples showed translation
drawings, translations of a polygon on dot paper, and on a coordinate plane. Explanation
was provided by using the addition model (adding values to each coordinate) to transform
the coordinates of the preimage figure.

In U7, the topic of translations began in lesson 6.1, with an example of translations
of repetitive patterns on cloth. Examples were provided on a detailed coordinate plane
and the rule for finding the image coordinates were provided. Horizontal and vertical
translations were discussed as well as translations in a diagonal direction. The last
example in this lesson illustrated the use of a graphing calculator and the steps to perform

the translation with this technology.
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Rotations. The topics of angles and rotations were presented in U6, lesson 11.4
which begun with instructions for construction of a triangle with one given side length
and two given angle measures. Instructions for duplicating an angle using a ruler and
protractor, and using a compass and a straightedge were discussed and illustrated step by
step. The topic of rotation of a figure was accompanied with a detailed drawing and the
direction of the rotation about a fixed point was indicated. An example in this lesson
included suggestions for tracing a figure and in another example using a computer
program to show the movement of the figure in a counterclockwise and clockwise
direction about a point.

The U7 textbook included the topic of understanding rotation in the second half of
lesson 5.2. This narrative discussed rotation in a plane about a point called its center. The
magnitude of rotation was indicated to show both positive and negative partial
revolutions as well as the addition and subtraction of the number of degrees of the angle
measures. A highlighted block drew attention to the fundamental property of rotations
(angle measures may be added). Next in lesson 6.3, the topics of rotations and rotation
symmetry were continued. Examples included rotation of a point and of figures. A
highlighted block illustrated the rotation property. Rotational symmetry was discussed
and examples were given with instructions for finding the measure of the angle of
symmetry.

Dilations. Dilations were presented in U7 lesson 7.7 in a section called The Size-
Change Model for Multiplication (p. 470). The terms in this section included expansion,
size-change factor, contraction, and size change of magnitude k, but the term dilation

itself was not used. Students were provided with two activities in the narrative portion of
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this lesson. The students were instructed to graph a figure and its enlargement in one
activity and to graph the figure and its reduction in the other. As students answer
questions within the activity’s sequence of steps, they were guided to discovery of the
concepts. The example using scale factor was presented in word problem form and
related the meaning to an example using increased earnings. This lesson continued with
an activity for size change performed on a graphing calculator. The activity provided
delineated instructions on calculator use and screen shots for each step. This lesson ended
with a discussion of a size change of one. The term identity was not used.

Summary of textbook series.

In summary, across the four textbook series, translations, reflections, rotations,
and dilations lessons were present in at least one textbook in a three year sequence. Little
was observed in any lesson that would assist in correcting or eliminating the issues that
students experience with topics of transformations as identified in the literature. The
Glencoe and UCSMP textbook series appeared to contain more direct instruction that
would assist students with various kinds of specific types of transformations by including
more explanations and detailed illustrations. Yet, the fact that a lesson was contained in a
textbook is not a guarantee that it will be used in the classroom and some of the lesson
locations within the textbooks appeared in a location that would limit student exposure to
study the constructs.

Number of Transformation Tasks

This section presents the answer to the question: To what extent do the geometric

transformation lessons’ student exercises incorporate the learning expectations in

textbooks from sixth grade through eighth grade within a published textbook series, and
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across textbooks from different publishers?

The student exercise data is reported in this section. A total of 1149 student
exercises following the lessons were analyzed over the four textbook series. The student
exercises were located at the end of each lesson, with the exception of the Connected
Mathematics 2 series in which questions occurred at the end of the complete unit
(chapter). The questions within the CM 2 textbooks were typically multi-part questions
and each part was counted as one question in the coding process.

When evaluating questions that contained multi-parts, each part of the question,
either numbered or lettered, was counted as one question. A total of 336 in the four
Prentice Hall textbooks, 352 in the four Glencoe textbooks, 251 in the Connected
Mathematics 2 series; and 210 student exercises in the UCSMP series were analyzed.
Figure 9 displays the total number of transformation tasks in each textbook and each
series, including the textbooks designated for the alternate pre-algebra course for grade 8.

Number of tasks in each series. Both the Prentice Hall and Glencoe textbook
series were analyzed with the two textbook sequences that show the variations available
for district textbook curriculum choice for their middle grades. The grade eight textbook
would be chosen from either the Course 3 or the Pre-Algebra textbook and was presented
to illustrate the content of each curriculum depending on the choice of textbooks and to
provide a visual comparison. The Prentice Hall series (PH678) contained an average of
71 transformation guestions in each textbook, and the PH67-pa sequence contained an
average of 81 questions in each. Notice that the Glencoe series G678 offered students the
greatest number of transformation tasks for practice of concepts over the three year

curriculum which contained a total of 265 transformation questions, or an average of 88
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questions per textbook. The Glencoe G6 textbook contained more than twice the number
of exercises offered in the PH6 textbook. Both the Glencoe series, G67-pa, and the
Connected Mathematics 2 series had approximately 250 transformation questions each,
or an average of 83 questions per textbook. The Connected Mathematics 2, CM8
textbook offered 59% more exercises than offered by PH8 and 50% more than the
number offered by the G8 textbook. The UCSMP series contained a total of 210 student
exercises on transformations, an average of 105 questions per textbook (the U8 textbook
did not contain transformation questions and was not used in these calculations).

Number of each type of transformation task presented in student exercises.
The data collected on tasks included the specific type of transformation that the student
was asked to perform in the exercises. In exercises that contained multiple parts, each
part was counted as one task. Figure 10 presents the number of student tasks that
addressed each transformation construct in each of the textbook series. The data presents
the actual number of exercises for each type of transformation to facilitate comparing the
types of transformations within each textbook.

The type of task least represented in all of the textbook series was composite
transformations. The types of transformations represented most frequently were
translations and reflections, followed by rotations. Dilation tasks were presented in fewer
exercises than the rigid transformations except in the CM2 series. The Prentice Hall
series placed a larger concentration of questions on reflections, translations, and rotations.

The Glencoe series concentrated on translations and reflections; the Connected
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Mathematics 2 series concentrated on dilations in the CM7 textbook and appeared to
have an even number of the other types of transformations in the grade 8 textbook. The
UCSMP series covered transformations in the 6™ and 7™ grade textbooks, and did not
present transformation topics in the 8" grade textbook. Figure 11 illustrates the relative
importance that each textbook series placed on each of the transformation concepts by the
specific number of questions presented in each series. This presentation provides a
relative comparison over the series, whereas Figure 10 provided a comparison across
textbooks within a series. Table 9 presents the total number and percent of the types of
transformation tasks in each textbook and in each textbook series. The type and amount
of tasks contained in each textbook series varied since it was dependent on the
transformation concepts included in each of the textbooks. The most frequently presented
transformation in any series, with over 30% of the tasks in each, was translations.

The Prentice Hall textbook series focused close to 30% of student exercises on
translation, and 27% on reflection tasks. This approximate percentage applied to both the
PH678 sequence and the PH67-pa sequence. A larger percent of tasks were devoted to
symmetry in the PH6 textbook, but symmetry tasks remained approximately constant
with either sequence of textbooks by Prentice Hall. Rotation tasks numbered less than
20% in the Prentice Hall, PH678 textbook sequence, but increased to almost 25% with
the pre-algebra textbook sequence. Dilations accounted for about 10% in the PH678
textbook sequence, but less than 1% with the choice of the Prentice Hall textbooks, 67-pa
curriculum. With the choice of the pre-algebra textbook for the PH series the topic of
dilations was < 0.1% of the total transformation tasks.

The Glencoe textbook series presented approximately 30% of the transformation
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tasks on translations, with either textbook series choice. Additionally the Glencoe series
presented approximately 25% on reflections. Rotation tasks were addressed in 16% of the
tasks in the G8 textbook, and 33% in the G-pa textbook. Again, composite transformation
tasks were seldom represented with 1% in the G678 series of textbooks and 2.4% for the

G67-pa alternative textbook sequence.
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Table 9

Number and Percent of Each Transformation Type to the Total Number of Transformation Tasks in Each Textbook

Text Total Translation Reflection Rotation Symmetry Dilation Composite
book Tasks Tasks Tasks Tasks Tasks Tasks Tasks

# % # % # % # % # % # %
PH6 43 8 18.6 11 25.6 5 116 19 442 0 0.0 0 0.0
PH7 86 30 349 24 279 22 25.6 10 116 0 0.0 0 0.0
PH8 92 24  26.1 26  28.3 16 17.4 3 3.3 22 239 1 1.1
PH-pa 115 43 374 27 23.5 32 27.8 10 8.7 1 0.9 2 1.7

Prentice Hall Textbook Series Total for Grades 6, 7, 8

PH-678 221 62 28.1 61 27.6 43 195 32 145 22 10.0 1 <01
PH-67pa 244 81 33.2 62 25.4 59 24.2 39 16.0 1 <01 2 0.8
G6 98 39 39.8 25 255 29 29.6 5 5.1 0 0.0 0 0.0
G7 67 26 38.8 25 37.3 0 0.0 13 194 0 0.0 3 4.5
G8 100 20 20.0 18 18.0 16 16.0 18 18.0 28 28.0 0 0.0
G-pa 87 11 126 12 13.8 29 33.3 0 0.0 32 36.8 3 3.4
Glencoe Textbook Series Total for Grades 6, 7, 8
G-678 265 85 321 68 25.7 45 17.0 36 13.6 28 10.6 3 1.1
G-67-pa 252 76 30.2 62 24.6 58 23.0 18 7.1 32 127 6 2.4
CM6 19 0 0.0 1 5.3 3 15.8 15 78.9 0 0.0 0 0.0
CM7 86 6 7.0 0 0.0 0 0.0 5 5.8 75 87.2 0 0.0
CM8 146 20 13.7 47  32.2 38 26.0 26 17.8 4 2.7 11 7.5
Connected Mathematics 2 Textbook Series Total for Grades 6, 7, 8
CM series 251 26 104 48 19.1 42 16.3 46 18.3 79 315 11 4.4
U6 73 21 28.8 20 274 26 35.6 6 8.2 0 0.0 0 0.0
u7 137 32 234 20 146 34 248 15 10.9 35 255 1 0.7
us 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
UCSMP Textbook Series Total for Grades 6, 7, 8
U series 210 53 25.2 40 19.0 60 28.6 21 10.0 35 16.7 1 0.5
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In the Connected Mathematics 2 series, symmetry exercises were the focus in
almost 80% of the CM6 transformation tasks, and more than 87% in the CM7 textbook.
Additionally, in Connected Mathematics 2 series, dilations tasks represented more than
31% of the transformation exercises. Composite transformation tasks were present in
4.4% of the transformation exercises and represented the highest concentration of all the
series examined.

The UCSMP textbook series contained transformation lessons in the grade 6 and
7 textbooks, transformations were not covered in the UCSMP textbook for 8" grade. The
transformation exercises focused on reflections in 19% of the exercises and translations
in 25% of the transformation tasks. The UCSMP series placed the largest emphasis on
rotation (28.6%). Dilation tasks were presented in approximately 16% of the exercises.
Composite transformation tasks appeared in a negligible percentage of exercises in all
four of the textbook series. Notice that composite transformation tasks were negligible in
number in most of the textbook series examined. The findings show a small amount of
content on composite transformations presented in some textbooks with the highest value
of 4.4% found in the CM2 series.

Characteristics of the transformation tasks in the student exercises. This
section expands on the student exercise data to address the specific characteristic of the
transformation tasks within each exercise. In addition to differences comparing the types
of transformations covered in each text, detailed study of each transformation type was
conducted to understand the nature of how each transformation was structured. Specific

characteristics and sample examples are illustrated in Appendix K.
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Following each type of transformation topic a summary graph is presented
showing the number of exercises in each textbook by series on the specific
transformation types. The categories of tasks were grouped specifically into three to four
categories in relation to the student issues identified from the literature review. When an
exercise required a response that was not specific or could not be grouped into the
specifically defined categories it was labeled as a general transformation type. A general
transformation type would include filling in vocabulary or identifying the direction of
movement of the transformation from a diagram or picture. Typical general translation
sample problems were provided within the transformation type sections to further explain
how the exercises were classified. Appendix | provides examples to illustrate each of the
categories of the specific transformation tasks.

Translations. Table 10 displays the tasks related to translations with the direction
of movement of the figure determined by instructions in the student exercises in each of
the textbooks. Notice the Prentice Hall PH6 textbook focused entirely on nonspecific
translation tasks and the propensity to single directional movements in the PH7 textbook.
General translation tasks were those that gave instructions for a translation but not
direction or axis over which to move the figure. Figure 12 illustrates an example of this
type of exercise. Other types of general translation exercises asked the student to write
the rule for the translation, or describe the translations used in an illustrated pattern. The
PH-pa textbook presented general translation questions and figures translated in a

downward/right direction.
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Table 10

Percent of Each Type of Translation Task to the Total Number of Translation Tasks in
Each Textbook

Task and direction of movement (£x, ty)

Text Total Gen Tr Tr Tr Tr Tr Tr Tr Tr
book Number eral-Tr +y +X -y X () () () (1)
PH6 8 100 0 0 0 0 0 0 0 0
PH7 30 13 3 30 20 17 0 7 7 3
PH8 24 29 8 8 4 13 8 4 13 13
PH-pa 43 26 7 7 5 5 33 9 7 2
G6 39 10 3 3 3 8 18 21 15 2
G7 26 34 0 7 3 3 17 14 14 7
G8 20 20 0 0 0 5 20 15 20 20
G-pa 11 100 0 0 0 0 0 0 0 0
CM6 0 0 0 0 0 0 0 0 0 0
CM7 6 50 0 0 0 0 50 0 0 0
CM8 20 100 0 0 0 0 0 0 0 0
U6 21 48 0 10 14 5 5 5 0 14
u7 32 41 6 9 13 6 9 13 3 0
U8 0 0 0 0 0 0 0 0 0 0

Note: *The direction of movement of the translation is designated by the signs of the coordinate
directions (x, y). Hence, (+, -) indicates to the right and down.

**The number of exercises reported herein does not reflect the total number of questions presented
in the textbook exercises, but only those relating to the specific transformation characteristics. The numbers
reported in the tables are rounded to a whole percentage and hence do not necessarily total 100 percent
because a task could be coded as having more than one type of characteristic (e. g., translate from left to
right, reflect a figure upward over a horizontal).

26. Writing in Math
Why is it helpful to describe a translation by stating the horizontal change first?
Prentice Hall, Course 2, © 2010, p. 513

Figure 12. Example of General Translation Exercise

The Glencoe series offered many questions on general translations with G7 and

G-pa listing the highest percentages in each. The G6, G7, and G8 textbooks contained
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nearly twice as many questions on translations moving to right/down, left/down, and
right/up than any of the other directions of movements of exercises in this series. The G8
textbook contained a nearly equal distribution of questions asking for translation
movement upward and downward in combination with right and left movements. Notice
that the G-pa text focused only on general translation exercises.

In the Connected Mathematics 2 series, the CM6 textbook did not offer
translations in a lesson, while the CM7 textbook focused 50% of questions on tasks for
translations to the right/down in 50% of the exercises and the remaining 50% were
general translation questions. The CM8 presented 100% general translation questions.

The UCSMP U6 textbook offered approximately 50% of its transformation
exercises on general translations, and a combination of right, left, and mixed directions.
Exercises with translating a figure upward or to the right/up were not present. The U7
textbook focused over 40% on general translation questions, and a combination of
directions except upward and to the left. As stated earlier, the UCSMP grade 8 textbook
did not contain transformational lessons.

Figure 13 summarizes the translation exercises in each textbook series. This
figure groups the types of translations into four groups. General translation problems and
single direction movement of translation exercises are easier for students to perform than
translations with dual direction of movement, and those with translations upward and/or
to the left.

Reflections. Table 11 presents information on the nature of the tasks related to

reflection with the direction of movement of the figure in each of the textbook series.
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Table 11

Percent of Each Type of Reflection Task to Total Number of Reflection Tasks in Each
Textbook

Task and direction of movement over axis
Text Total Rf Rf Rf Rf Rf Rf Rf Rf Rf Rf Rf Rf

book  Num up down right left over on Right Right Over Over sym
-ber line to down up X y
PH6 11 45 0 9 9 0 9 o0 O 0 9 18 0
PH7 24 29 4 17 25 17 0 4 O 0 0 0 4
PH8 26 0 12 23 12 23 12 0 O 0 0 0 19
PH-pa 27 26 4 30 4 19 15 4 0 0 0 0 0
G6 25 0 16 16 20 12 0 0 O 12 8 16 0
G7 25 0 8 24 8 12 0 20 O 0 0 28 0
G8 18 11 6 17 17 0 11 12 0 0 17 11 0
G-pa 12 0O 8 25 17 0 0 16 O 0 0 33 0
CM6 1 0O 0 O 0O 0 0o 0 O 0 0 0 100
CM7 0 0 0 0 0 0O 0 O O 0 0 0 0
CM8 47 17 0 2 2 11 6 15 O 0 0 6 40
U6 20 20 0 5 0 0 20 0 O 0 20 10 25
u7 20 25 0 0 15 0O 0 5 5 0 30 15 5
U8 0 0 0 0 0 0O 0 0 O 0 0 0 0

Note: Direction of movement of the reflected figure is indicated by up, down, right, left, etc., over the axis
or a line, or of a figure translated to overlap (onto) some part of the pre-image.

Both the Prentice Hall and Glencoe series focused most student exercises on the
reflection of figures in one direction and offered few problems with reflections over a line
other than the x- or y-axis. Some of the exercises examined did not specify the direction
of the reflection to the right/left or up/down, hence the coding symbols on the tables as Rf
over x or Rf over y were needed; this type of exercise typically instructed the student to

draw a figure and perform a reflection. Figure 14 provides a sample of this classification.
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Rf right/down or Rf right/up indicated a diagonal movement of the reflection on the
graph. The symbol Rfo indicated examples where the student was to perform a reflection
of the figure over/onto the pre-image itself. The Glencoe series textbooks G7, G8 and G-
pa, as well as the Connected Mathematics 2 textbook CM8 contained numerous problems
coded as Rfo. Figure 15 presents a typical problem that was coded as reflection over/onto
itself. For this type of exercise the pre-image was reflected over a line and is super-

imposed on top of itself in whole or in part.

10 b. When a point (x,y) is reflected over the x-axis, what are the coordinates of its
image?
UCSMP, Pre-Transition Mathematics (U6), ©2009, p.647

Figure 14. Example of Reflection Exercise - Rf over x

Graph each figure and its reflection over the x-axis. Then find the coordinates of

the reflected image.

6. quadrilateral DEFG with vertices D(-4, 6), E(-2, -3), F(2, 2), and G(4, 9)
Glencoe, Course 2 ©2009, p. 560

Figure 15. Example of Reflection Exercise - Rfo (over/onto preimage)

Figure 16 summarizes the reflection exercises in each middle school textbook
series. This figure groups the types of reflections into four groups: general reflection
problems, reflections upward and/or left movement exercises, reflections over an oblique
line, and reflection over/onto the pre-image. Directions of reflection pre-image movement
to the right and downward are easier for students to perform than reflections over an
oblique line or reflections of the image overlapping onto the pre-image figure.

The Prentice Hall, PH6 textbook included approximately 45% of the total
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reflection questions on general reflections and PH7, PH-pa, contained approximately
25%. The percentage of the remaining exercises decreased in frequency of reflections
from downward/right, to the left/up direction. Exercises containing reflection of a figure
over a line other than an axis, or of a figure reflected over/onto the figure itself were
seldom present. The Glencoe textbook G8 contained 11% general reflection questions.
All four of the Glencoe textbooks contained problems for single or double directional
movements of reflections, as to the right and downward, and for a figure reflected
over/onto the pre-image of the figure.

The results showed that reflection exercises were seldom included in the CM6 and
CMT7 textbooks and were presented essentially in only the CM8 textbook, additionally the
CMB8 textbook presented reflection problems with movement of the figure to the left/up,
or downward, as well as reflections of figures over/onto the pre-image.

The UCSMP series textbooks presented approximately one quarter of the
transformation tasks on general reflections, and the same amount on reflecting figures
either right and left, or up and down. The U6 textbook presented another fourth of the
exercises on reflective symmetry.

Rotations. Student exercises on rotations were found in eleven of the fourteen
textbooks as shown in Table 12. In the Prentice Hall series all instructions indicated that
rotations were in a counterclockwise direction. The G6 and G-pa textbooks presented
rotation tasks in both the clockwise and counterclockwise directions, as well as exercises
on rotation symmetry. The Glencoe textbook G7 did not contain exercises on rotation

tasks. The G8 textbook’s exercises center 94% of all transformation tasks on rotation
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Table 12

Percent of Each Type of Rotation Task to Total Number of Rotation Tasks in Each
Textbook

Task and direction of movement

Textbook Total Ro Ro-right Ro- Ro Ro Ro
Number left symmetry  exterior  angle
point
PH6 5 0 0 60 40 0 0
PH7 22 23 0 32 45 0 0
PH8 16 63 0 0 31 0 6
PH-pa 32 13 0 41 25 6 16
G6 29 7 34 34 24 0 0
G7 0 0 0 0 0 0 0