Calibration of Dolomite Clumped Isotope Thermometry

Ian Z. Winkelstern¹, Stephen Kaczmarek², Kyger C Lohmann¹, and John Humphrey³
¹University of Michigan, Ann Arbor, USA
²Western Michigan University, Kalamazoo, USA
³Colorado School of Mines, Golden, USA
Email: ianzw@umich.edu

Differences between dolomite and calcite clumped isotope calibrations have yet to be resolved empirically across a range of temperatures. Acid fractionation differences calculated by Guo et al. (2009) suggest that dolomite Δ_{47} values should be ~0.02 ‰ lower than calcites formed at the same temperature. Empirical calibrations for siderite (Fernandez et al. 2014) and apatite (Eagle et al. 2010), however, suggest that a universal Δ_{47} – temperature relationship may exist across all carbonate-bearing mineral phases.

We analyzed five synthetic and four natural dolomites formed at known temperatures. Synthetic dolomites were grown in Mg-Ca-Cl solutions at temperatures of 200 – 235 °C. Natural samples are constrained by fluid inclusion analyses (~90 °C), tropical climate (~25 and ~27 °C), and ocean water column depth (~3 °C).

These data result in a calibration line that is statistically indistinguishable from the high acid reaction temperature calibration of Defliese et al. (2015). At least with current measurement capabilities, we find no evidence for a consistent dolomite Δ_{47} offset. We also found no evidence for a relationship between the degree of dolomite cation ordering and Δ_{47}. These results further support the idea of a universal calibration for carbonate clumped isotope thermometry and enable new investigations into conditions of dolomite formation.

Eagle et al. (2010) Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. PNAS, 107, 10377-10382.